AQAH

Realising potential

AS AND
A-LEVEL

AS (7516)
A-level (7517)

Specifications

For teaching from September 2015 onwards
For AS exams in May/June 2016 onwards

For A-level exams in May/June 2017 onwards

Version 1.5 21 January 2019

.....

S —

-~

http://aqa.org.uk/7517
mailto:computerscience%40aqa.org.uk?subject=

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

Contents

1 Introduction S
1.1 Why choose AQA for AS and A-level Computer
Science 5
1.2 Support and resources to help you teach 6
2 Specification at a glance 8
2.1AS 8
2.2 A-level 9
3 Subject content — AS 11
3.1 Fundamentals of programming 11
3.2 Fundamentals of data structures 16
3.3 Systematic approach to problem solving 16
3.4 Theory of computation 18
3.5 Fundamentals of data representation 21
3.6 Fundamentals of computer systems 29
3.7 Fundamentals of computer organisation and
architecture 32
3.8 Consequences of uses of computing 37
3.9 Fundamentals of communication and networking 38
4 Subject content — A-level 41
4.1 Fundamentals of programming 41
4.2 Fundamentals of data structures 47
4.3 Fundamentals of algorithms 52
4.4 Theory of computation 54
4.5 Fundamentals of data representation 63
4.6 Fundamentals of computer systems 72
4.7 Fundamentals of computer organisation and
architecture 76
4.8 Consequences of uses of computing 81
4.9 Fundamentals of communication and networking 82
4.10 Fundamentals of databases 88
4.11 Big Data 90
4.12 Fundamentals of functional programming 91
4.13 Systematic approach to problem solving 95
4.14 Non-exam assessment - the computing practical
project 96
5 Scheme of assessment 111
5.1 Aims 111
5.2 Assessment objectives 112

Visit for the most up-to-date specification, resources, support and administration 3

http://

5.3 Assessment weightings 112

6 Non-exam assessment administration 115

6.1 Supervising and authenticating 115
6.2 Avoiding malpractice 116
6.3 Teacher standardisation 116
6.4 Internal standardisation 116
6.5 Annotation 117
6.6 Submitting marks 117
6.7 Factors affecting individual students 117
6.8 Keeping students' work 118
6.9 Moderation 118
6.10 After moderation 118
7 General administration 119
7.1 Entries and codes 119
7.2 Overlaps with other qualifications 120
7.3 Awarding grades and reporting results 120
7.4 Re-sits and shelf life 120
7.5 Previous learning and prerequisites 120
7.6 Access to assessment: diversity and inclusion 120
7.7 Working with AQA for the first time 121
7.8 Private candidates 121

Are you using the latest version of this specification?

. You will always find the most up-to-date version of this specification on our website at
. We will write to you if there are significant changes to the specification.

4 Visit for the most up-to-date specification, resources, support and administration

http://
http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

1 Introduction

1.1 Why choose AQA for AS and A-level Computer
Science

Relevant to the classroom and the real world

Advances in computing are transforming the way we work and our new Computer Science
specifications are changing with the times. We’ve worked closely with teachers to develop our
popular qualifications, refreshing the content where needed but retaining the most popular and
effective aspects of the previous specifications.

This evolutionary approach has built on strong foundations to deliver flexible, accessible and
rigorous qualifications, backed by top quality support, resources and professional development.
Without the need for huge changes we’re delighted to present up-to-date specifications that focus
on the knowledge, understanding and skills students need to progress to higher education or thrive
in the workplace.

A qualification for all abilities at AS and A-level

You'll find these specifications suitable and appropriate for mixed ability classes — and we’ve
helped to minimise the impact on classroom delivery, resourcing and timetabling by ensuring that
you can teach AS and A-level together. This will help to make the transition to the new
specifications smoother and our schemes of work will show you how the two levels can be taught
together.

Assessment you can trust

Like you, we are committed to ensuring that students obtain the results they deserve and are
capable of.

* The new specifications have very clear, well-structured assessment criteria.

* Our exams include a variety of assessment styles so that students feel more confident and
able to engage with the questions.

+ Assessment of non-exam assessment (NEA) (A-level only) is more straightforward and
designed to encourage students to do an investigative project on a topic of particular interest
to them.

New resources and support to help teaching and learning

Our free resources, events and support, along with professional development opportunities, will
help you to inspire and help your students to fulfil their potential. We’re also collaborating closely
with publishers to ensure that you have textbooks to support you and your students with the new
specifications. With us, your students will get the right results from an exam board you trust.

You can find out about all our Computer Science qualifications at aga.org.uk/7517.

Visit for the most up-to-date specification, resources, support and administration 5

http://www.aqa.org.uk/7517
http://

1.2 Support and resources to help you teach

We know that support and resources are vital for your teaching and that you have limited time to
find or develop good quality materials. So we’ve worked with experienced teachers to provide you
with a range of resources that will help you confidently plan, teach and prepare for exams.

Teaching resources

We have too many Computer Science resources to list here so visit aga.org.uk/7517 to see them
all. They include:

* exemplar materials available on eAQA that highlight the standard required

» specimen and past papers and mark schemes that can be used to exemplify the required
standard

+ sample schemes of work and lesson plans to help you plan your course with confidence

+ textbooks

+ training courses to help you deliver AQA Computer Science qualifications

» dedicated subject advisers to offer expertise and guidance on the technical parts of the
qualification and a dedicated Computer Science subject team available by phone and email
to support with the delivery of the qualification

» subject expertise courses for all teachers, from newly-qualified teachers who are just getting
started to experienced teachers looking for fresh inspiration.

Preparing for exams

Visit aga.org.uk/7517 for everything you need to prepare for our exams, including:

» past papers, mark schemes and examiners’ reports

» specimen papers and mark schemes for new courses

» Exampro: a searchable bank of past AQA exam questions
+ exemplar student answers with examiner commentaries.

Analyse your students' results with Enhanced Results Analysis (ERA)

Find out which questions were the most challenging, how the results compare to previous years
and where your students need to improve. ERA, our free online results analysis tool, will help you
see where to focus your teaching. Register at aga.org.uk/era

For information about results, including maintaining standards over time, grade boundaries and our
post-results services, visit aga.org.uk/results

Keep your skills up to date with professional development

Wherever you are in your career, there’s always something new to learn. As well as subject-
specific training, we offer a range of courses to help boost your skills:

» improve your teaching skills in areas including differentiation, teaching literacy and meeting
Ofsted requirements
* help you prepare for a new role with our leadership and management courses.

You can attend a course at venues around the country, in your school or online — whatever suits
your needs and availability. Find out more at coursesandevents.aqa.org.uk

6 Visit for the most up-to-date specification, resources, support and administration

http://www.aqa.org.uk/7517
http://www.aqa.org.uk/7517
http://www.aqa.org.uk/era
http://www.aqa.org.uk/exams-administration/results-days
http://coursesandevents.aqa.org.uk/
http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

Get help and support

Visit our website for information, guidance, support and resources at aga.org.uk/7517

You can talk directly to the Computer Science subject team:
E: computerscience@aga.org.uk
T: 0161 957 3980

Visit for the most up-to-date specification, resources, support and administration 7

http://www.aqa.org.uk/7517
mailto:computerscience@aqa.org.uk
http://

2 Specification at a glance

2.1 AS

Subject content

1 Fundamentals of programming (page 11)

2 Fundamentals of data structures (page 16)

3 Systematic approach to problem solving (page 16)

4 Theory of computation (page 18)

5 Fundamentals of data representation (page 21)

6 Fundamentals of computer systems (page 29)

7 Fundamentals of computer organisation and architecture (page 32)
8 Consequences of uses of computing (page 37)

9 Fundamentals of communication and networking (page 38)

Assessments

What's assessed:

this paper tests a student's ability to program, as well as their theoretical knowledge of computer
science from subject content 1-4 above.

Assessed

* On-screen exam: 1 hour 45 minutes
« 50% of AS

Questions

Students answer a series of short questions and write/adapt/extend programs in an Electronic
Answer Document provided by us.

We will issue preliminary material, a skeleton program (available in each of the programming
languages) and, where appropriate, test data, for use in the exam.

+

8 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

What's assessed:

this paper tests a student's ability to answer questions from subject content 5-9 above.

Assessed

¢ Written exam: 1 hour 30 minutes
* 50% of AS

Questions

A series of short-answer and extended-answer questions.

2.2 A-level

Subject content

10 Fundamentals of programming (page 41)

11 Fundamentals of data structures (page 47)

12 Fundamentals of algorithms (page 52)

13 Theory of computation (page 54)

14 Fundamentals of data representation (page 63)

15 Fundamentals of computer systems (page 72)

16 Fundamentals of computer organisation and architecture (page 76)
17 Consequences of uses of computing (page 81)

18 Fundamentals of communication and networking (page 82)

19 Fundamentals of databases (page 88)

20 Big Data (page 90)

21 Fundamentals of functional programming (page 91)

22 Systematic approach to problem solving (page 95)

23 Non-exam assessment - the computing practical project (page 96)

Visit for the most up-to-date specification, resources, support and administration 9

http://

Assessments

What's assessed: this paper tests a student's ability to program, as well as their theoretical
knowledge of Computer Science from subject content 10-13 above and the skills required from
section 22 above.

Assessed

* On-screen exam: 2 hours 30 minutes
e 40% of A-level

Questions

Students answer a series of short questions and write/adapt/extend programs in an Electronic
Answer Document provided by us.

We will issue Preliminary Material, a Skeleton Program (available in each of the Programming
Languages) and, where appropriate, test data, for use in the exam.

+

What's assessed: this paper tests a student's ability to answer questions from subject content
14-21 above.

Assessed

» Written exam: 2 hours 30 minutes
* 40% of A-level

Questions

Compulsory short-answer and extended-answer questions.

+

What's assessed: the non-exam assessment assesses student's ability to use the knowledge
and skills gained through the course to solve or investigate a practical problem. Students will be
expected to follow a systematic approach to problem solving, as shown in section 22 above.

Assessed

e 75 marks
e 20% of A-level

10 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

3 Subject content — AS

We will support the following programming languages:

« C#

+ Java

+ Pascal/Delphi
* Python

* VB.Net.

Schools and colleges will be asked to indicate their programming language preference at the start
of the study of the specification.

3.1 Fundamentals of programming

3.1.1 Programming

3.1.1.1 Data types

Content Additional information

Understand the concept of a data type.

Understand and use the following appropriately:

* integer

» real/float

* Boolean

* character

» string

» date/time

* records (or equivalent)
* arrays (or equivalent).

Define and use user-defined data types based
on language-defined (built-in) data types.

Visit for the most up-to-date specification, resources, support and administration 11

http://

3.1.1.2 Programming concepts

Use, understand and know how the following The three combining principles (sequence,
statement types can be combined in programs: |iteration/repetition and selection/choice) are

, . basic to all imperative programming languages.
« variable declaration p prog g languag

» constant declaration

» assignment

* iteration

» selection

» subroutine (procedure/function).

Use definite and indefinite iteration, including
indefinite iteration with the condition(s) at the
start or the end of the iterative structure. A
theoretical understanding of condition(s) at
either end of an iterative structure is required,
regardless of whether they are supported by the
language being used.

Use nested selection and nested iteration
structures.

Use meaningful identifier names and know why
it is important to use them.

3.1.1.3 Arithmetic operations in a programming language

Be familiar with and be able to use:

* addition

* subtraction

* multiplication

 real/float division

+ integer division, including remainders
* exponentiation

* rounding

» truncation.

12 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

3.1.1.4 Relational operations in a programming language

Content Additional information

Be familiar with and be able to use:

* equalto

* not equal to

* less than

* greater than

* less than or equal to

» greater than or equal to.

3.1.1.5 Boolean operations in a programming language

Content Additional information

Be familiar with and be able to use:

+ NOT
« AND
+ OR

+ XOR.

3.1.1.6 Constants and variables in a programming language

Content Additional information

Be able to explain the differences between a
variable and a constant.

Be able to explain the advantages of using
named constants.

3.1.1.7 String-handling operations in a programming language

Content Additional information
Be familiar with and be able to use: Expected string conversion operations:
* length » string to integer
* position + string to float
* substring * integer to string
» concatenation » float to string
» character — character code » date/time to string
» character code — character + string to date/time.
» string conversion operations.

Visit for the most up-to-date specification, resources, support and administration 13

http://

3.1.1.8 Random number generation in a programming language

Content Additional information

Be familiar with, and be able to use, random
number generation.

3.1.1.9 Exception handling

Content Additional information

Be familiar with the concept of exception
handling.

Know how to use exception handling in a
programming language with which students are
familiar.

3.1.1.10 Subroutines (procedures/functions)

Content Additional information

Be familiar with subroutines and their uses.

Know that a subroutine is a named ‘out of line’
block of code that may be executed (called) by
simply writing its name in a program statement.

Be able to explain the advantages of using
subroutines in programs.

3.1.1.11 Parameters of subroutines

Content Additional information

Be able to describe the use of parameters to
pass data within programs.

Be able to use subroutines with interfaces.

3.1.1.12 Returning a value/values from a subroutine

Additional information

Be able to use subroutines that return values to
the calling routine.

14 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

3.1.1.13 Local variables in subroutines

Content Additional information

Know that subroutines may declare their own
variables, called local variables, and that local
variables:

» exist only while the subroutine is
executing
» are accessible only within the subroutine.

Be able to use local variables and explain why it
is good practice to do so.

3.1.1.14 Global variables in a programming language

Content Additional information

Be able to contrast local variables with global
variables.

3.1.2 Procedural-oriented programming

3.1.2.1 Structured programming

Content Additional information

Understand the structured approach to program
design and construction.

Be able to construct and use hierarchy charts
when designing programs.

Be able to explain the advantages of the
structured approach.

Visit for the most up-to-date specification, resources, support and administration 15

http://

3.2 Fundamentals of data structures

3.2.1 Data structures and abstract data types

3.2.1.1 Data structures

Additional information

Be familiar with the concept of data structures. | It may be helpful to set the concept of a data
structure in various contexts that students may
already be familiar with. It may also be helpful
to suggest/demonstrate how data structures
could be used in a practical setting.

3.2.1.2 Single- and multi-dimensional arrays (or equivalent)

Content Additional information

Use arrays (or equivalent) in the design of A one-dimensional array is a useful way of
solutions to simple problems. representing a vector. A two-dimensional array
is a useful way of representing a matrix. More
generally, an n-dimensional array is a set of
elements with the same data type that are
indexed by a tuple of n integers, where a tuple
is an ordered list of elements.

3.2.1.3 Fields, records and files

Content Additional information

Be able to read/write from/to a text file.

Be able to read/write data from/to a binary (non-
text) file.

3.3 Systematic approach to problem solving

3.3.1 Aspects of software development

3.3.1.1 Analysis

Content Additional information

Be aware that before a problem can be solved, |Students should have experience of using
it must be defined, the requirements of the abstraction to model aspects of the external
system that solves the problem must be world in a program.

established and a data model created.

16 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

3.3.1.2 Design

Additional information

Be aware that before constructing a solution,
the solution should be designed and specificed,
for example planning data structures for the
data model, designing algorithms, designing an
appropriate modular structure for the solution
and designing the human user interface.

3.3.1.3 Implementation

Students should have sufficient experience of
successfully structuring programs into modular
parts with clear documented interfaces to
enable them to design appropriate modular
structures for solutions.

Content Additional information

Be aware that the models and algorithms need
to be implemented in the form of data structures
and code (instructions) that a computer can
understand.

3.3.1.4 Testing

Content

Students should have sufficient practice of
writing, debugging and testing programs to
enable them to develop the skills to articulate
how programs work, arguing for their
correctness and efficiency using logical
reasoning, test data and user feedback.

Additional information

Be aware that the implementation must be
tested for the presence of errors, using selected
test data covering normal (typical), boundary
and erroneous data.

3.3.1.5 Evaluation

Content

Students should have practical experience of
designing and applying test data, normal,
boundary and erroneous to the testing of
programs so that they are familiar with these
test data types and the purpose of testing.

Additional information

Know the criteria for evaluating a computer
system.

Visit for the most up-to-date specification, resources, support and administration

17

http://

3.4 Theory of computation

3.4.1 Abstraction and automation

3.4.1.1 Problem-solving

Additional information

Be able to develop solutions to simple logic
problems.

Be able to check solutions to simple logic
problems.

3.4.1.2 Following and writing algorithms

Content Additional information

Understand the term algorithm. A sequence of steps that can be followed to
complete a task and that always terminates.

Be able to express the solution to a simple
problem as an algorithm using pseudo-code,
with the standard constructs:

* sequence
* assignment
» selection
* iteration.

Be able to hand-trace algorithms.

Be able to convert an algorithm from pseudo-
code into high level language program code.

Be able to articulate how a program works,

arguing for its correctness and its efficiency
using logical reasoning, test data and user

feedback.

18 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

3.4.1.3 Abstraction

Content Additional information

Be familiar with the concept of abstraction as
used in computations and know that:

* representational abstraction is a
representation arrived at by removing
unnecessary details

» abstraction by generalisation or
categorisation is a grouping by common
characteristics to arrive at a hierarchical
relationship of the 'is a kind of' type.

3.4.1.4 Information hiding

Content Additional information

Be familiar with the process of hiding all details
of an object that do not contribute to its essential
characteristics.

3.4.1.5 Procedural abstraction

Additional information

Know that procedural abstraction represents a | The result of abstracting away the actual values

computational method. used in any particular computation is a
computational pattern or computational method
- a procedure.

3.4.1.6 Functional abstraction

Content Additional information

Know that for functional abstraction the The result of a procedural abstraction is a
particular computation method is hidden. procedure, not a function. To get a function
requires yet another abstraction, which
disregards the particular computation method.
This is functional abstraction.

Visit for the most up-to-date specification, resources, support and administration 19

http://

3.4.1.7 Data abstraction

Content Additional information

Know that details of how data are actually Data abstraction is a methodology that enables
represented are hidden, allowing new kinds of [us to isolate how a compound data object is
data objects to be constructed from previously [used from the details of how it is constructed.

defined types of data objects. For example, a stack could be implemented as

an array and a pointer for top of stack.

3.4.1.8 Problem abstraction/reduction

Content Additional information

Know that details are removed until the problem
is represented in a way that is possible to solve
because the problem reduces to one that has
already been solved.

3.4.1.9 Decomposition

Content Additional information

Know that procedural decomposition means
breaking a problem into a number of sub-
problems, so that each sub-problem
accomplishes an identifiable task, which might
itself be further subdivided.

3.4.1.10 Composition

Content Additional information

Know how to build a composition abstraction by
combining procedures to form compound
procedures.

Know how to build data abstractions by
combining data objects to form compound data,
for example tree data structure.

20 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

3.4.1.11 Automation

Content Additional information

Understand that automation requires putting
models (abstraction of real world objects/
phenomena) into action to solve problems. This
is achieved by:

» creating algorithms

+ implementing the algorithms in program
code (instructions)

* implementing the models in data
structures

» executing the code.

3.4.2 Finite state machines (FSMs)

Computer science is about building clean
abstract models (abstractions) of messy, noisy,
real world objects or phenomena. Computer
scientists have to choose what to include in
models and what to discard, to determine the
minimum amount of detail necessary to model
in order to solve a given problem to the required
degree of accuracy.

Computer science deals with putting the models
into action to solve problems. This involves
creating algorithms for performing actions on,
and with, the data that has been modelled.

3.4.2.1 Finite state machines (FSMs) without output

Content

Additional information

Be able to draw and interpret simple state
transition diagrams and state transition tables

for FSMs with no output.

3.5 Fundamentals of data representation

3.5.1 Number systems

3.5.1.1 Natural numbers

Content

Additional information

Be familiar with the concept of a natural number [N ={0, 1, 2, 3, ... }

and the set N of natural numbers (including
zero).

3.5.1.2 Integer numbers

Content

Additional information

Be familiar with the concept of an integer and
the set Z of integers.

7Z={..,-3,2-1,01,23, ..}

Visit for the most up-to-date specification, resources, support and administration 21

http://

3.5.1.3 Rational numbers

Content Additional information

Be familiar with the concept of a rational Q is the set of numbers that can be written as
number and the set Q of rational numbers, and |fractions (ratios of integers). Since a number
that this set includes the integers. such as 7 can be written as 7/1, all integers are

rational numbers.

3.5.1.4 Irrational numbers

Additional information

Be familiar with the concept of an irrational An irrational number is one that cannot be
number. written as a fraction, for example V2.

3.5.1.5 Real numbers

Content Additional information

Be familiar with the concept of a real number R is the set of all 'possible real world quantities'.
and the set R of real numbers, which includes

the natural numbers, the rational numbers, and

the irrational numbers.

3.5.1.6 Ordinal numbers

Content Additional information

Be familiar with the concept of ordinal numbers | When objects are placed in order, ordinal

and their use to describe the numerical numbers are used to tell their position. For

positions of objects. example, if we have a well-ordered set S = {'a’,
‘b’, ‘c’, ‘d’}, then ‘a’ is the 1st object, ‘b’ the 2nd,
and so on.

3.5.1.7 Counting and measurement

Additional information

Be familiar with the use of:

+ natural numbers for counting
* real numbers for measurement.

22 \Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

3.5.2 Number bases

3.5.2.1 Number base

Content Additional information

Be familiar with the concept of a number base,
in particular:

» decimal (base 10)
* binary (base 2)
* hexadecimal (base 16).

Students should be familiar with expressing a
number’s base using a subscript as follows:

Base 10: Number,g, eg 6719
Base 2: Number,, eg 10011011,
Base 16: Numberg, eg AE4¢

Convert between decimal, binary and
hexadecimal number bases.

Be familiar with, and able to use, hexadecimal
as a shorthand for binary and to understand
why it is used in this way.

3.5.3 Units of information

3.5.3.1 Bits and bytes

Content

Additional information

Know that:

* the bit is the fundamental unit of
information

* a byte is a group of 8 bits.

A bit is either 0 or 1.

Know that the 2" different values can be
represented with n bits.

For example, 3 bits can be configured in 23 = 8
different ways.

000, 001, 010, 011, 100, 101, 110, 111

Visit for the most up-to-date specification, resources, support and administration 23

http://

3.5.3.2 Units

Content Additional information

Know that quantities of bytes can be described
using binary prefixes representing powers of 2
or using decimal prefixes representing powers
of 10, eg one kibibyte is written as 1KiB = 210 B
and one kilobyte is written as 1 kB = 103 B.

Know the names, symbols and corresponding
powers of 2 for the binary prefixes:

+ Kkibi, Ki - 210

* mebi, Mi - 220

+ gibi, Gi- 230

+ tebi, Ti- 240
Know the names, symbols and corresponding
powers of 10 for the decimal prefixes:

+ kilo, k - 103

+ mega, M - 106

+ giga, G - 10°

« tera, T-1012

3.5.4 Binary number system

3.5.4.1 Unsigned binary

Content

Historically the terms kilobyte, megabyte, etc
have often been used when kibibyte, mebibyte,
etc are meant.

Additional information

Know the difference between unsigned binary
and signed binary.

Students are expected to be able to convert
between unsigned binary and decimal and vice
versa.

Know that in unsigned binary the minimum and
maximum values for a given number of bits, n,
are 0 and 2" -1 respectively.

3.5.4.2 Unsigned binary arithmetic

Additional information

Be able to:

* add two unsigned binary integers
+ multiply two unsigned binary integers.

24 \Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

3.5.4.3 Signed binary using two’s complement

Content Additional information

Know that signed binary can be used to This is the only representation of negative
represent negative integers and that one integers that will be examined. Students are
possible coding scheme is two’s complement. expected to be able to convert between signed
binary and decimal and vice versa.

Know how to:

* represent negative and positive integers
in two’s complement

» perform subtraction using two’s
complement

+ calculate the range of a given number of
bits, n.

3.5.4.4 Numbers with a fractional part

Content Additional information

Know how numbers with a fractional part can be
represented in:

+ fixed point form in binary in a given
number of bits.

Be able to convert for each representation form:
» decimal to binary of a given number of
bits
* binary to decimal of a given number of
bits.

3.5.5 Information coding systems

3.5.5.1 Character form of a decimal digit

Content Additional information

Differentiate between the character code
representation of a decimal digit and its pure
binary representation.

Visit for the most up-to-date specification, resources, support and administration 25

http://

3.5.5.2 ASCIl and Unicode

Content Additional information

Describe ASCII and Unicode coding systems
for coding character data and explain why
Unicode was introduced.

3.5.5.3 Error checking and correction

Content Additional information

Describe and explain the use of:
* parity bits
* majority voting
» check digits.

3.5.6 Representing images, sound and other data

3.5.6.1 Bit patterns, images, sound and other data

Content Additional information

Describe how bit patterns may represent other
forms of data, including graphics and sound.

3.5.6.2 Analogue and digital

Content Additional information

Understand the difference between analogue
and digital:

+ data
* signals.

3.5.6.3 Analogue/digital conversion

Content Additional information

Describe the principles of operation of:

+ an analogue to digital converter (ADC)
» adigital to analogue converter (DAC).

26 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

3.5.6.4 Bitmapped graphics

Content Additional information

Explain how bitmaps are represented.

Explain the following for bitmaps:

* resolution
» colour depth
* size in pixels.

The size of an image is also alternatively
sometimes described as the resolution of an
image.

Size of an image in pixels is width of image in
pixels x height of image in pixels.

Resolution is expressed as number of dots per
inch where a dot is a pixel.

Colour depth = number of bits stored for each
pixel.

Calculate storage requirements for bitmapped
images and be aware that bitmap image files
may also contain metadata.

Ignoring metadata,

storage requirements = size in pixels x colour
depth

where size in pixels is width in pixels x height in
pixels.

Be familiar with typical metadata.

3.5.6.5 Digital representation of sound

eg width, height, colour depth.

Content Additional information

Describe the digital representation of sound in
terms of:

* sample resolution
» sampling rate and the Nyquist theorem.

Calculate sound sample sizes in bytes.

3.5.6.6 Musical Instrument Digital Interface (MIDI)

Content

Additional information

Describe the purpose of MIDI and the use of
event messages in MIDI.

Describe the advantages of using MIDI files for
representing music.

Visit for the most up-to-date specification, resources, support and administration 27

http://

3.5.6.7 Data compression

Know why images and sound files are often
compressed and that other files, such as text
files, can also be compressed.

Understand the difference between lossless
and lossy compression and explain the
advantages and disadvantages of each.

Explain the principles behind the following
techniques for lossless compression:

* run length encoding (RLE)
+ dictionary-based methods.

3.5.6.8 Encryption

Understand what is meant by encryption and be
able to define it.

Students should be familiar with the terms
cipher, plaintext and ciphertext.

Caesar and Vernam ciphers are at opposite
extremes. One offers perfect security, the other
doesn’t. Between these two types are ciphers
that are computationally secure — see below.
Students will be assessed on the two types.
Ciphers other than Caesar may be used to
assess students' understanding of the principles
involved. These will be explained and be similar
in terms of computational complexity.

Be familiar with Caesar cipher and be able to
apply it to encrypt a plaintext message and
decrypt a ciphertext.

Be able to explain why it is easily cracked.

Be familiar with Vernam cipher or one-time pad
and be able to apply it to encrypt a plaintext
message and decrypt a ciphertext.

Explain why Vernam cipher is considered as a
cypher with perfect security.

Since the key k is chosen uniformly at random,
the ciphertext c is also distributed uniformly.
The key k must be used once only. The key k is
known as a one-time pad.

28 \Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

Content

Additional information

Compare Vernam cipher with ciphers that
depend on computational security.

Vernam cipher is the only one to have been
mathematically proved to be completely secure.
The worth of all other ciphers ever devised is
based on computational security. In theory,
every cryptographic algorithm except for
Vernam cipher can be broken, given enough
ciphertext and time.

3.6 Fundamentals of computer systems

3.6.1 Hardware and software

3.6.1.1 Relationship between hardware and software

Content

Additional information

Understand the relationship between hardware
and software and be able to define the terms:

* hardware
e software.

3.6.1.2 Classification of software

Content

Additional information

Explain what is meant by:

» gsystem software
» application software.

Understand the need for, and attributes of,
different types of software.

3.6.1.3 System software

Content

Additional information

Understand the need for, and functions of the
following system software:

» operating systems (OSs)

« utility programs

* libraries
» translators (compiler, assembler,
interpreter).

Visit for the most up-to-date specification, resources, support and administration 29

http://

3.6.1.4 Role of an operating system (0S)

Understand that a role of the operating system
is to hide the complexities of the hardware.

Know that the OS handles resource
management, managing hardware to allocate
processors, memories and |/O devices among
competing processes.

3.6.2 Classification of programming languages

3.6.2.1 Classification of programming languages

Show awareness of the development of types of
programming languages and their classification
into low-and high-level languages.

Know that low-level languages are considered
to be:

* machine-code
» assembly language.

Know that high-level languages include
imperative high level-language.

Describe machine-code language and
assembly language.

Understand the advantages and disadvantages
of machine-code and assembly language
programming compared with high-level
language programming.

Explain the term ‘imperative high-level
language’ and its relationship to low-level
languages.

30 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

3.6.3 Types of program translator

3.6.3.1 Types of program translator

Understand the role of each of the following:

+ assembler
* compiler
* interpreter.
Explain the differences between compilation

and interpretation. Describe situations in which
each would be appropriate.

Explain why an intermediate language such as
bytecode is produced as the final output by
some compilers and how it is subsequently
used.

Understand the difference between source and
object (executable) code.

3.6.4 Logic gates

3.6.4.1 Logic gates

Construct truth tables for the following logic Students should know and be able to use ANSI/
gates: IEEE standard 91-1984 Distinctive shape logic
. NOT gate symbols for these logic gates.

+ AND

+ OR

+ XOR
* NAND
*+ NOR.

Be familiar with drawing and interpreting logic
gate circuit diagrams involving one or more of
the above gates.

Complete a truth table for a given logic gate
circuit.

Write a Boolean expression for a given logic
gate circuit.

Visit for the most up-to-date specification, resources, support and administration 31

http://

Content Additional information

Draw an equivalent logic gate circuit for a given
Boolean expression.

3.6.5 Boolean algebra

3.6.5.1 Using Boolean algebra

Additional information

Be familiar with the use of Boolean identities
and De Morgan’s laws to manipulate and
simplify Boolean expressions.

3.7 Fundamentals of computer organisation and
architecture

3.7.1 Internal hardware components of a computer

3.7.1.1 Internal hardware components of a computer

Content Additional information

Have an understanding and knowledge of the | Although exam questions about specific

basic internal components of a computer machines will not be asked, it might be useful to
system. base this section on the machines used at the
centre.

Understand the role of the following
components and how they relate to each other:

* processor

* main memory
* address bus

» data bus

» control bus

* 1/O controllers.

Understand the need for, and means of,
communication between components. In
particular, understand the concept of a bus and
how address, data and control buses are used.

32 \Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

Content

Additional information

Be able to explain the difference between von
Neumann and Harvard architectures and
describe where each is typically used.

Embedded systems such as digital signal
processing (DSP) systems use Harvard
architecture processors extensively.

Von Neumann architecture is used extensively
in general purpose computing systems.

Understand the concept of addressable
memory.

3.7.2 The stored program concept

3.7.2.1 The meaning of the stored program concept

Content Additional information

Be able to describe the stored program
concept: machine code instructions stored in
main memory are fetched and executed serially
by a processor that performs arithmetic and
logical operations.

3.7.3 Structure and role of the processor and its components

3.7.3.1 The processor and its components

Content

Additional information

Explain the role and operation of a processor
and its major components:

+ arithmetic logic unit

+ control unit

+ clock

* general-purpose registers

» dedicated registers, including:
* program counter
* current instruction register
* memory address register
* memory buffer register
» status register.

Visit for the most up-to-date specification, resources, support and administration 33

http://

3.7.3.2 The Fetch-Execute cycle and the role of registers within it

Content

Additional information

Explain how the Fetch-Execute cycle is used to
execute machine code programs, including the

stages in the cycle (fetch, decode, execute) and
details of registers used.

3.7.3.3 The processor instruction set

Content Additional information

Understand the term ‘processor instruction set’
and know that an instruction set is processor
specific.

Know that instructions consist of an opcode and
one or more operands (value, memory address
or register).

3.7.3.4 Addressing modes

A simple model will be used in which the
addressing mode will be incorporated into the
bits allocated to the opcode so the latter defines
both the basic machine operation and the
addressing mode. Students will not be expected
to define opcode, only interpret opcodes in the
given context of a question.

For example, 4 bits have been allocated to the
opcode (3 bits for basic machine operation, eg
ADD, and 1 bit for the addressing mode). 4 bits
have been allocated to the operand, making the
instruction, opcode + operand, 8 bits in length.
In this example, 16 different opcodes are
possible (24 = 16).

Opcode Operand
Basic Addressing
Machine Mode
Operation
|0 0 1 0 0101]|

Content Additional information

Understand and apply immediate and direct
addressing modes.

Immediate addressing: the operand is the
datum.

Direct addressing: the operand is the address of
the datum. Address to be interpreted as
meaning either main memory or register.

34 \Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

3.7.3.5 Machine-code/assembly language operations

Content Additional information

Understand and apply the basic machine-code
operations of:

* load
* add
» subtract
» store
* branching (conditional and unconditional)
* compare
* logical bitwise operators (AND, OR, NOT,
XOR)
* logical
+ shift right
 shift left
* halt.

Use the basic machine-code operations above
when machine-code instructions are expressed
in mnemonic form- assembly language, using
immediate and direct addressing.

3.7.3.6 Factors affecting processor performance

Content Additional information

Explain the effect on processor performance of:

* multiple cores

* cache memory

» clock speed

« word length

* address bus width
+ data bus width.

3.7.4 External hardware devices

3.7.4.1 Input and output devices

Content Additional information

Know the main characteristics, purposes and Devices that need to be considered are:
suitability of the devices and understand their

principles of operation. * barcode reader

» digital camera
* laser printer
* RFID.

Visit for the most up-to-date specification, resources, support and administration 35

http://

3.7.4.2 Secondary storage devices

Explain the need for secondary storage within a
computer system.

Know the main characteristics, purposes,
suitability and understand the principles of
operation of the following devices:

* hard disk
» optical disk
+ solid-state disk (SSD).

SSD = NAND flash memory + a controller that
manages pages, and blocks and complexities of
writing. Based on floating gate transistors that
trap and store charge. A block, made up of
many pages, cannot overwrite pages, page has
to be erased before it can be written to but
technology requires the whole block to be
erased. Lower latency and faster transfer
speeds than a magnetic disk drive.

Compare the capacity and speed of access of
various media and make a judgement about
their suitability for different applications.

36 \Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

3.8 Consequences of uses of computing

3.8.1 Individual (moral), social (ethical), legal and cultural issues and

opportunities

Show awareness of current individual (moral),
social (ethical), legal and cultural opportunities
and risks of computing.

Understand that:

» developments in computer science and
the digital technologies have dramatically
altered the shape of communications and
information flows in societies, enabling
massive transformations in the capacity
to:

* monitor behaviour

* amass and analyse personal
information

+ distribute, publish, communicate and
disseminate personal information.

» computer scientists and software
engineers therefore have power, as well
as the responsibilities that go with it, in the
algorithms that they devise and the code
that they deploy.

» software and their algorithms embed
moral and cultural values.

* the issue of scale, for software the whole
world over, creates potential for individual
computer scientists and software
engineers to produce great good, but with
it comes the ability to cause great harm.

Be able to discuss the challenges facing
legislators in the digital age.

Teachers may wish to employ two very powerful
techniques, hypotheticals and case studies, to
engage students in the issues.

Hypotheticals allow students to isolate quickly
important ethical principles in an artificially
simplified context. For example, a teacher might
ask students to explain and defend how, as a
Google project manager, they would evaluate a
proposal to bring Google’s Street View
technology to a remote African village. What
questions should be asked? Who should be
consulted? What benéefits, risks and safeguards
considered? What are the trade-offs?

Case studies allow students to confront the
tricky interplay between the sometimes
competing ethical values and principles relevant
in real world settings. For example, the Google
Street View case might be used to tease out the
ethical conflicts between individual and cultural
expectations, the principle of informed consent,
Street View’s value as a service, its potential
impact on human perceptions and behaviours,
and its commercial value to Google and its
shareholders.

There are many resources available on the
Internet to support teaching of this topic.

Visit for the most up-to-date specification, resources, support and administration 37

http://

3.9 Fundamentals of communication and networking

3.9.1 Communication

3.9.1.1 Communication methods

Additional information

Define serial and parallel transmission methods
and discuss the advantages of serial over
parallel transmission.

Define and compare synchronous and
asynchronous data transmission.

Describe the purpose of start and stop bits in
asynchronous data transmission.

3.9.1.2 Communication basics

Content Additional information

Define:

* baud rate
* bit rate

* bandwidth
* latency

» protocol.

Differentiate between baud rate and bit rate. Bit rate can be higher than baud rate if more
than one bit is encoded in each signal change.

Understand the relationship between bit rate Bit rate is directly proportionate to bandwidth.
and bandwidth.

38 \Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

3.9.2 Networking

3.9.2.1 Network topology

Understand:

» physical star topology
* logical bus network topology

» differentiate between them
» explain their operation

3.9.2.2 Types of networking between hosts

A network physically wired in star topology can
behave logically as a bus network by using a
bus protocol and appropriate physical switching.

Explain the following and describe situations
where they might be used:

* peer-to-peer networking
* client-server networking.

3.9.2.3 Wireless networking

In a peer-to-peer network, each computer has
equal status. In a client-server network, most
computers are nominated as clients and one or
more as servers. The clients request services
from the servers, which provide these services,
for example file server, email server.

Explain the purpose of WiFi.

A wireless local area network that is based on
international standards.

Used to enable devices to connect to a network
wirelessly.

Be familiar with the components required for
wireless networking.

Wireless network adapter.

Wireless access point.

Be familiar with how wireless networks are
secured.

Strong encryption of transmitted data using
WPA (Wifi Protected Access)/WPA2, SSID
(Service Set Identifier) broadcast disabled,
MAC (Media Access Control) address white list.

Explain the wireless protocol Carrier Sense
Multiple Access with Collision Avoidance
(CSMA/CA) with and without Request to Send/
Clear to Send (RTS/CTS).

Knowledge of Carrier Sense Multiple Access/
Collection Detection (CSMA/CD) as used in, for
example, Ethernet, is not required.

Be familiar with the purpose of Service Set
Identifier (SSID).

Visit for the most up-to-date specification, resources, support and administration 39

http://

40 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4 Subject content — A-level

We will support the following programming languages:

C#

Java
Pascal/Delphi
Python
VB.Net.

Schools and colleges will be asked to indicate their programming language preference at the start
of the study of the specification.

4.1 Fundamentals of programming

4.1.1 Programming

4.1.1.1 Data types

Understand the concept of a data type.

Understand and use the following appropriately: | Variables declared as a pointer or reference

data type are used as stores for memory

integer addresses of objects created at runtime, ie
real/float dynamically. Not all languages support explicit
Boolean pointer types, but students should have an
character opportunity to understand this data type.
string

date/time

pointer/reference
records (or equivalent)
arrays (or equivalent).

Define and use user-defined data types based
on language-defined (built-in) data types.

Visit for the most up-to-date specification, resources, support and administration 41

http://

4.1.1.2 Programming concepts

Use, understand and know how the following The three combining principles (sequence,
statement types can be combined in programs: |iteration/repetition and selection/choice) are

, . basic to all imperative programming languages.
« variable declaration p prog g languag

» constant declaration

» assignment

* iteration

» selection

» subroutine (procedure/function).

Use definite and indefinite iteration, including
indefinite iteration with the condition(s) at the
start or the end of the iterative structure. A
theoretical understanding of condition(s) at
either end of an iterative structure is required,
regardless of whether they are supported by the
language being used.

Use nested selection and nested iteration
structures.

Use meaningful identifier names and know why
it is important to use them.

4.1.1.3 Arithmetic operations in a programming language

Be familiar with and be able to use:

* addition

* subtraction

* multiplication

 real/float division

+ integer division, including remainders
* exponentiation

* rounding

» truncation.

42 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.1.1.4 Relational operations in a programming language

Content Additional information

Be familiar with and be able to use:

* equalto

* not equal to

* less than

* greater than

* less than or equal to

» greater than or equal to.

4.1.1.5 Boolean operations in a programming language

Content Additional information

Be familiar with and be able to use:

+ NOT
« AND
+ OR

+ XOR.

4.1.1.6 Constants and variables in a programming language

Content Additional information

Be able to explain the differences between a
variable and a constant.

Be able to explain the advantages of using
named constants.

4.1.1.7 String-handling operations in a programming language

Content Additional information
Be familiar with and be able to use: Expected string conversion operations:
* length » string to integer
* position + string to float
* substring * integer to string
» concatenation » float to string
» character — character code » date/time to string
» character code — character + string to date/time.
» string conversion operations.

Visit for the most up-to-date specification, resources, support and administration 43

http://

4.1.1.8 Random number generation in a programming language

Content Additional information

Be familiar with, and be able to use, random
number generation.

4.1.1.9 Exception handling

Content Additional information

Be familiar with the concept of exception
handling.

Know how to use exception handling in a
programming language with which students are
familiar.

4.1.1.10 Subroutines (procedures/functions)

Content Additional information

Be familiar with subroutines and their uses.

Know that a subroutine is a named ‘out of line’
block of code that may be executed (called) by
simply writing its name in a program statement.

Be able to explain the advantages of using
subroutines in programs.

4.1.1.11 Parameters of subroutines

Content Additional information

Be able to describe the use of parameters to
pass data within programs.

Be able to use subroutines with interfaces.

4.1.1.12 Returning a value/values from a subroutine

Additional information

Be able to use subroutines that return values to
the calling routine.

44 \Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.1.1.13 Local variables in subroutines

Content Additional information

Know that subroutines may declare their own
variables, called local variables, and that local
variables:

» exist only while the subroutine is
executing
» are accessible only within the subroutine.

Be able to use local variables and explain why it
is good practice to do so.

4.1.1.14 Global variables in a programming language

Content Additional information

Be able to contrast local variables with global
variables.

4.1.1.15 Role of stack frames in subroutine calls

Content Additional information

Be able to explain how a stack frame is used
with subroutine calls to store:

e return addresses
* parameters
¢ |ocal variables.

4.1.1.16 Recursive techniques

Content Additional information

Be familiar with the use of recursive techniques
in programming languages (general and base
cases and the mechanism for implementation).

Be able to solve simple problems using
recursion.

Visit for the most up-to-date specification, resources, support and administration 45

http://

4.1.2 Programming paradigms

4.1.2.1 Programming paradigms

Understand the characteristics of the
procedural- and object-oriented programming
paradigms, and have experience of
programming in each.

4.1.2.2 Procedural-oriented programming

Understand the structured approach to program
design and construction.

Be able to construct and use hierarchy charts
when designing programs.

Be able to explain the advantages of the
structured approach.

4.1.2.3 Object-oriented programming

Be familiar with the concepts of: Students should know that:
* class + aclass defines methods and property/
+ object attribute fields that capture the common
« instantiation behaviours and characteristics of objects
« encapsulation * objects based on a class are created

using a constructor, implicit or explicit, and
a reference to the object assigned to a
reference variable of the class type

* in the Unified Modelling Language (UML)
composition is represented by a black
diamond line and aggregation by a white
diamond line.

* inheritance

* aggregation

* composition

* polymorphism
« overriding.

Know why the object-oriented paradigm is used.

Be aware of the following object-oriented design | Students would benefit from practical
principles: experience of programming to an interface, but
will not be explicitly tested on programming to
interfaces or be required to program to
interfaces in any practical exam.

* encapsulate what varies
» favour composition over inheritance
« program to interfaces, not implementation.

46 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

Content

Additional information

Be able to write object-oriented programs.

Practical experience of coding for user-defined
classes involving:

« abstract, virtual and static methods

+ inheritance

* aggregation

* polymorphism

* public, private and protected specifiers.

Be able to draw and interpret class diagrams.

Class diagrams involving single inheritance,
composition (black diamond line), aggregation
(white diamond line), public (+), private (-) and
protected (#) specifiers.

4.2 Fundamentals of data structures

4.2.1 Data structures and abstract data types

4.2.1.1 Data structures

Additional information

Be familiar with the concept of data structures.

It may be helpful to set the concept of a data
structure in various contexts that students may
already be familiar with. It may also be helpful
to suggest/demonstrate how data structures
could be used in a practical setting.

4.2.1.2 Single- and multi-dimensional arrays (or equivalent)

Content Additional information

Use arrays (or equivalent) in the design of
solutions to simple problems.

4.2.1.3 Fields, records and files

Content

A one-dimensional array is a useful way of
representing a vector. A two-dimensional array
is a useful way of representing a matrix. More
generally, an n-dimensional array is a set of
elements with the same data type that are
indexed by a tuple of n integers, where a tuple
is an ordered list of elements.

Additional information

Be able to read/write from/to a text file.

Visit for the most up-to-date specification, resources, support and administration 47

http://

Content

Additional information

Be able to read/write data from/to a binary (non-
text) file.

4.2.1.4 Abstract data types/data structures

Content Additional information

Be familiar with the concept and uses of a:

* queue
» stack

« graph

* tree

* hash table
+ dictionary
* vector.

Be able to use these abstract data types and
their equivalent data structures in simple
contexts.

Students should also be familiar with methods
for representing them when a programming
language does not support these structures as
built-in types.

Be able to distinguish between static and
dynamic structures and compare their uses, as
well as explaining the advantages and
disadvantages of each.

Describe the creation and maintenance of data
within:
* queues (linear, circular, priority)

« stacks
* hash tables.

4.2.2 Queues

4.2.2.1 Queues

Content

Additional information

Be able to describe and apply the following to
linear queues, circular queues and priority
queues:

* add anitem

* remove an item

» test for an empty queue
» test for a full queue.

48

Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.2.3 Stacks

4.2.3.1 Stacks

Content Additional information
Be able to describe and apply the following Peek or top returns the value of the top element
operations: without removing it.

* push

* pop

* peek ortop
+ test for empty stack
+ test for stack full.

4.2.4 Graphs

4.2.4.1 Graphs

Content Additional information

Be aware of a graph as a data structure used to
represent more complex relationships.

Be familiar with typical uses for graphs.

Be able to explain the terms:

* graph

* weighted graph

+ vertex/node

» edgel/arc

» undirected graph
+ directed graph.

Know how an adjacency matrix and an
adjacency list may be used to represent a
graph.

Be able to compare the use of adjacency
matrices and adjacency lists.

4.2.5 Trees

4.2.5.1 Trees (including binary trees)

Content Additional information

Know that a tree is a connected, undirected Note that a tree does not have to have a root.
graph with no cycles.

Visit for the most up-to-date specification, resources, support and administration 49

http://

Content Additional information

Know that a rooted tree is a tree in which one
vertex has been designated as the root. A
rooted tree has parent-child relationships
between nodes. The root is the only node with
no parent and all other nodes are descendants
of the root.

Know that a binary tree is a rooted tree in which | A common application of a binary tree is as a
each node has at most two children. binary search tree.

Be familiar with typical uses for rooted trees.

4.2.6 Hash tables

4.2.6.1 Hash tables

Content Additional information

Be familiar with the concept of a hash table and [A hash table is a data structure that creates a
its uses. mapping between keys and values.

Be able to apply simple hashing algorithms.

Know what is meant by a collision and how A collision occurs when two key values
collisions are handled using rehashing. compute the same hash.

4.2.7 Dictionaries

4.2.7.1 Dictionaries

Content Additional information

Be familiar with the concept of a dictionary. A collection of key-value pairs in which the
value is accessed via the associated key.

Be familiar with simple applications of Information retrieval:
dictionaries, for example information retrieval,
and have experience of using a dictionary data
structure in a programming language.

For example, the document 'The green, green
grass grows' would be represented by the
dictionary:

{'grass’ : 1, ‘green’ : 2, ‘grows’ : 1, ‘the’ : 1}
ignoring letter case.

50 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.2.8 Vectors

4.2.8.1 Vectors

Be familiar with the concept of a vector and the
following notations for specifying a vector:

* [2.0,3.14159, -1.0, 2.718281828]
+ 4-vector over R written as R4
» function interpretation

+ 0~20

* 1+~ 3.14159

e 2~-1.0

« 3+~ 2.718281828

* ~ means maps to

That all the entries must be drawn from the
same field, eg R.

A vector can be represented as a list of
numbers, as a function and as a way of
representing a geometric point in space.

A dictionary is a useful way of representing a
vector if a vector is viewed as a function.

f:S—R

the set S ={0,1,2,3} and the co-domain, R, the
set of Reals

For example, in Python the 4-vector example
could be represented as a dictionary as follows:

{0:2.0, 1:3.14159, 2:-1.0, 3:2.718281828}

Dictionary representation of a vector.

See above.

List representation of a vector.

For example, in Python, a 2-vector over R
would be written as [2.0,3.0].

1-D array representation of a vector.

For example in VB.Net, a 4-vector over R would
be written as Dim example(3) As Single.

Visualising a vector as an arrow.

For example a 2-vector [2.0, 3.0] over R can be
represented by an arrow with its tail at the origin
and its head at (2.0, 3.0).

Vector addition and scalar-vector multiplication.

Know that vector addition achieves translation
and scalar-vector multiplication achieves
scaling.

Convex combination of two vectors, u and v.

Is an expression of the form au + Bv where a, B
20anda+pB=1

Dot or scalar product of two vectors.

The dot product of two vectors, u and v,
u=I[uy¢, ..., up]and v=_[vyq, , Volis

u-v=uqvytusvot+ ... + upvp,

Applications of dot product.

Finding the angle between two vectors.

Visit for the most up-to-date specification, resources, support and administration 51

http://

4.3 Fundamentals of algorithms

4.3.1 Graph-traversal

4.3.1.1 Simple graph-traversal algorithms

Additional information

Breadth-first: shortest path for an unweighted
graph.

Be able to trace breadth-first and depth-first
search algorithms and describe typical

applications of both. Depth-first: Navigating a maze.

4.3.2 Tree-traversal

4.3.2.1 Simple tree-traversal algorithms

Content Additional information

Be able to trace the tree-traversal algorithms:

* pre-order
» post-order
* in-order.

Be able to describe uses of tree-traversal Pre-Order: copying a tree.

algorithms. In-Order: binary search tree, outputting the

contents of a binary search tree in ascending
order.

Post-Order: Infix to RPN (Reverse Polish
Notation) conversions, producing a postfix
expression from an expression tree, emptying a
tree.

4.3.3 Reverse Polish

4.3.3.1 Reverse Polish - infix transformations

Content Additional information

Be able to convert simple expressions in infix
form to Reverse Polish notation (RPN) form and
vice versa. Be aware of why and where it is
used.

Eliminates need for brackets in sub-
expressions.

Expressions in a form suitable for evaluation
using a stack.

Used in interpreters based on a stack for
example Postscript and bytecode.

52 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.3.4 Searching algorithms

4.3.4.1 Linear search

Content Additional information

Know and be able to trace and analyse the Time complexity is O(n).
complexity of the linear search algorithm.

4.3.4.2 Binary search

Additional information

Know and be able to trace and analyse the time | Time complexity is O(log n).
complexity of the binary search algorithm.

4.3.4.3 Binary tree search

Additional information

Be able to trace and analyse the time Time complexity is O(log n).
complexity of the binary tree search algorithm.

4.3.5 Sorting algorithms

4.3.5.1 Bubble sort

Content Additional information

Know and be able to trace and analyse the time | This is included as an example of a particularly
complexity of the bubble sort algorithm. inefficient sorting algorithm, time-wise. Time
complexity is O(n?).

4.3.5.2 Merge sort

Content Additional information
Be able to trace and analyse the time The 'merge' sort is an example of 'Divide and
complexity of the merge sort algorithm. Conquer' approach to problem solving. Time

complexity is O(nlog n).

Visit for the most up-to-date specification, resources, support and administration 53

http://

4.3.6 Optimisation algorithms

4.3.6.1 Dijkstra’s shortest path algorithm

Content Additional information
Understand and be able to trace Dijkstra’s Students will not be expected to recall the steps
shortest path algorithm. in Dijkstra's shortest path algorithm.

Be aware of applications of shortest path
algorithm.

4.4 Theory of computation

4.4.1 Abstraction and automation

4.4.1.1 Problem-solving

Content Additional information

Be able to develop solutions to simple logic
problems.

Be able to check solutions to simple logic
problems.

4.4.1.2 Following and writing algorithms

Content Additional information

Understand the term algorithm. A sequence of steps that can be followed to
complete a task and that always terminates.

Be able to express the solution to a simple
problem as an algorithm using pseudo-code,
with the standard constructs:

* sequence
* assignment
« selection
* iteration.

Be able to hand-trace algorithms.

Be able to convert an algorithm from pseudo-
code into high level language program code.

54 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

Content Additional information

Be able to articulate how a program works,

arguing for its correctness and its efficiency
using logical reasoning, test data and user

feedback.

4.4.1.3 Abstraction

Content Additional information

Be familiar with the concept of abstraction as
used in computations and know that:

» representational abstraction is a
representation arrived at by removing
unnecessary details

» abstraction by generalisation or
categorisation is a grouping by common
characteristics to arrive at a hierarchical
relationship of the 'is a kind of' type.

4.4.1.4 Information hiding

Content Additional information

Be familiar with the process of hiding all details
of an object that do not contribute to its
essential characteristics.

4.4 1.5 Procedural abstraction

Content Additional information

Know that procedural abstraction represents a | The result of abstracting away the actual values

computational method. used in any particular computation is a
computational pattern or computational method
- a procedure.

4.4 1.6 Functional abstraction

Content Additional information

Know that for functional abstraction the The result of a procedural abstraction is a
particular computation method is hidden. procedure, not a function. To get a function
requires yet another abstraction, which
disregards the particular computation method.
This is functional abstraction.

Visit for the most up-to-date specification, resources, support and administration 55

http://

4.4 1.7 Data abstraction

Content Additional information

Know that details of how data are actually Data abstraction is a methodology that enables
represented are hidden, allowing new kinds of [us to isolate how a compound data object is
data objects to be constructed from previously [used from the details of how it is constructed.

defined types of data objects. For example, a stack could be implemented as

an array and a pointer for top of stack.

4.4.1.8 Problem abstraction/reduction

Content Additional information

Know that details are removed until the problem
is represented in a way that is possible to solve,
because the problem reduces to one that has
already been solved.

4.4.1.9 Decomposition

Content Additional information

Know that procedural decomposition means
breaking a problem into a number of sub-
problems, so that each sub-problem
accomplishes an identifiable task, which might
itself be further subdivided.

4.4.1.10 Composition

Content Additional information

Know how to build a composition abstraction by
combining procedures to form compound
procedures.

Know how to build data abstractions by
combining data objects to form compound data,
for example tree data structure.

56 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.4.1.11 Automation

Content Additional information

Understand that automation requires putting
models (abstraction of real world objects/
phenomena) into action to solve problems. This
is achieved by:

» creating algorithms

* implementing the algorithms in program
code (instructions)

* implementing the models in data
structures

» executing the code.

4.4.2 Regular languages

Computer science is about building clean
abstract models (abstractions) of messy, noisy,
real world objects or phenomena. Computer
scientists have to choose what to include in
models and what to discard, to determine the
minimum amount of detail necessary to model
in order to solve a given problem to the required
degree of accuracy.

Computer science deals with putting the models
into action to solve problems. This involves
creating algorithms for performing actions on,
and with, the data that has been modelled.

4.4.2.1 Finite state machines (FSMs) with and without output

Content

Additional information

Be able to draw and interpret simple state
transition diagrams and state transition tables
for FSMs with no output and with output (Mealy
machines only).

Visit for the most up-to-date specification, resources, support and administration 57

http://

4.4.2.2 Maths for regular expressions

Be familiar with the concept of a set and the
following notations for specifying a set:

A={1,2,3,4,5}
or set comprehension:
A={x|xeNAx=1}

where A is the set consisting of those objects x
such that x e N and x = 1 is true.

Know that the empty set, {}, is the set with no
elements.

Know that an alternative symbol for the empty
setis G.

A set is an unordered collection of values in
which each value occurs at most once.

Several languages support set construction.

In Python, for example, use of curly braces
constructs a set:

{1,2,3}.
| means such that.

x € N means that x is a member of the set N
consisting of the natural numbers, ie {0, 1, 2, 3,
4, ...}

The symbol A means AND.

The term A x > =1 means AND x is greater than
or equal to 1.

In Python, {2 » x for x in {1, 2, 3 }} constructs {2,
4,6}

This is said to be a set comprehension over the
set{1,2,3}.

Be familiar with the compact representation of
a set, for example, the set {0"1" | n = 1}. This
set contains all strings with an equal number of
Osand 1s.

For example,

{0M" | n =1} = {01, 0011, 000111, 00001111,
)

Be familiar with the concept of:

» finite sets

* infinite sets

» countably infinite sets

+ cardinality of a finite set

» Cartesian product of sets.

A finite set is one whose elements can be
counted off by natural numbers up to a particular
number, for example as:

1st element, 2nd element, ..., 20th (and final)
element.

The set of natural numbers, N and the set of real
numbers, R are examples of infinite sets.

A countably infinite set is one that can be
counted off by the natural numbers.

The set of real numbers is not countable. The
cardinality of a finite set is the number of
elements in a set. Cartesian product of two sets,
Xand, written X xY and read 'X cross Y', is
the set of all ordered pairs (a, b) where a is a
member of A and b is a member of B.

58 \Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

Be familiar with the meaning of the term:

e subset
* proper subset
¢ countable set.

{0, 1, 2} € N where € means proper subset of,
that is N contains everything in {0, 1, 2 } but
there is at least one element in N that is not in
{0,1,2}.

{0,1,2}<{0, 1, 2, 3} where € means subset
of.

€ includes both c and =, for example
{0,1,2,3}<{0, 1, 2, 3}is also true, because

{0,1,2,3}={0,1, 2, 3}. Acountable setis a
set with the same cardinality (number of
elements) as some subset of natural numbers.

Be familiar with the set operations:

* membership
* union

* intersection
» difference.

4.4.2.3 Regular expressions

The set difference A\B (or alternatively A-B) is
defined by A\B = {x : x € A and x ¢ B}

Know that a regular expression is simply a way
of describing a set and that regular expressions
allow particular types of languages to be
described in a convenient shorthand notation.

For example, the regular expression a(a|b)*
generates the set of strings {a, aa, ab, aaa, aab,
aba, ...}.

Be able to form and use simple regular
expressions for string manipulation and
matching.

Students should be familiar with the
metacharacters:

* * (0 or more repetitions)

* + (1 or more repetitions)

» ? (0 or 1 repetitions, ie optional)
| (alternation, ie or)

* () to group regular expressions.

Any other metacharacters used in an exam
question will be explained as part of the
question.

Be able to describe the relationship between
regular expressions and FSMs.

Regular expressions and FSMs are equivalent
ways of defining a regular language.

Be able to write a regular expression to
recognise the same language as a given FSM
and vice versa.

A student's ability to write very simple regular
expressions and FSMs will be assessed.

Visit for the most up-to-date specification, resources, support and administration 59

http://

4.4.2.4 Regular language

Content

Additional information

Know that a language is called regular if it can
be represented by a regular expression.

4.4.3 Context-free languages

Also, a regular language is any language that a
FSM will accept.

4.4.3.1 Backus-Naur Form (BNF)/syntax diagrams

Content Additional information

Be able to check language syntax by referring
to BNF or syntax diagrams and formulate
simple production rules.

Be able to explain why BNF can represent
some languages that cannot be represented
using regular expressions.

4.4 .4 Classification of algorithms

4.4.4.1 Comparing algorithms

Content Additional information

Understand that algorithms can be compared
by expressing their complexity as a function
relative to the size of the problem. Understand
that the size of the problem is the key issue.

Understand that some algorithms are more
efficient:

» time-wise than other algorithms
» space-wise than other algorithms.

Efficiently implementing automated abstractions
means designing data models and algorithms to
run quickly while taking up the minimal amount
of resources such as memory.

4.4.4.2 Maths for understanding Big-0 notation

Content

Additional information

Be familiar with the mathematical concept of a
function as a mapping from one set of values,
the domain, to another set of values, drawn
from the co-domain, for example N — N.

60 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

Content Additional information

Be familiar with the concept of:

+ a linear function, for example y = 2x

+ a polynomial function, for example y = 2x2

+ an exponential function, for example y =
2X

* alogarithmic function, for example

y =logqg X.

Be familiar with the notion of permutation of a n! is the product of all positive integers less than
set of objects or values, for example, the letters |or equal to n.

of a word and that the number of permutations
of n distinct objects is n factorial (n!).

4.4.4.3 Order of complexity

Content Additional information

Be familiar with Big-O notation to express time
complexity and be able to apply it to cases
where the running time requirements of the
algorithm grow in:

+ constant time

* logarithmic time
* linear time

* polynomial time
* exponential time.

Be able to derive the time complexity of an
algorithm.

4.4.4.4 Limits of computation

Content Additional information

Be aware that algorithmic complexity and
hardware impose limits on what can be
computed.

Visit for the most up-to-date specification, resources, support and administration 61

http://

4.4.4.5 Classification of algorithmic problems

Content Additional information

Know that algorithms may be classified as Heuristic methods are often used when tackling
being either: intractable problems.

» tractable - problems that have a
polynomial (or less) time solution are
called tractable problems.

* intractable - problems that have no
polynomial (or less) time solution are
called intractable problems.

4.4.4.6 Computable and non-computable problems

Content Additional information

Be aware that some problems cannot be solved
algorithmically.

4.4.4.7 Halting problem

Content Additional information

Describe the Halting problem (but not prove it),
that is the unsolvable problem of determining
whether any program will eventually stop if
given particular input.

Understand the significance of the Halting The Halting problem demonstrates that there
problem for computation. are some problems that cannot be solved by a
computer.

4.4.5 A model of computation

4.4.5.1 Turing machine

Content Additional information

Be familiar with the structure and use of Turing
machines that perform simple computations.

62 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

Know that a Turing machine can be viewed as a | Exam questions will only be asked about Turing
computer with a single fixed program, machines that have one tape that is infinite in
expressed using: one direction.

+ afinite set of states in a state transition
diagram

+ afinite alphabet of symbols

* an infinite tape with marked-off squares

* a sensing read-write head that can travel
along the tape, one square at a time.

One of the states is called a start state and
states that have no outgoing transitions are
called halting states.

Understand the equivalence between a
transition function and a state transition
diagram.

Be able to:

* represent transition rules using a
transition function

* represent transition rules using a state
transition diagram

* hand-trace simple Turing machines.

Be able to explain the importance of Turing Turing machines provide a (general/formal)
machines and the Universal Turing machine to | model of computation and provide a definition of
the subject of computation. what is computable.

4.5 Fundamentals of data representation

4.5.1 Number systems

4.5.1.1 Natural numbers

Be familiar with the concept of a natural number |N ={0, 1, 2, 3, ... }
and the set N of natural numbers (including
zero).

Visit for the most up-to-date specification, resources, support and administration 63

http://

4.5.1.2 Integer numbers

Content Additional information

Be familiar with the concept of an integer and z={..,-3,-2,-1,0,1,2,3, ... }
the set Z of integers.

4.5.1.3 Rational numbers

Content Additional information

Be familiar with the concept of a rational Q is the set of numbers that can be written as
number and the set Q of rational numbers, and |fractions (ratios of integers). Since a number
that this set includes the integers. such as 7 can be written as 7/1, all integers are

rational numbers.

4.5.1.4 Irrational numbers

Content Additional information
Be familiar with the concept of an irrational An irrational number is one that cannot be
number. written as a fraction, for example V2.

4.5.1.5 Real numbers

Content Additional information

Be familiar with the concept of a real number R is the set of all 'possible real world quantities'.
and the set R of real numbers, which includes

the natural numbers, the rational numbers and

the irrational numbers.

4.5.1.6 Ordinal numbers

Additional information

Be familiar with the concept of ordinal numbers | When objects are placed in order, ordinal

and their use to describe the numerical numbers are used to tell their position. For

positions of objects. example, if we have a well-ordered set S = {'a’,
‘b, ‘¢, ‘'d’}, then ‘@’ is the 1st object, ‘b’ the 2nd,
and so on.

4.5.1.7 Counting and measurement

Content Additional information

Be familiar with the use of:

+ natural numbers for counting
¢ real numbers for measurement.

64 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.5.2 Number bases

4.5.2.1 Number base

Content

Additional information

Be familiar with the concept of a number base,
in particular:

» decimal (base 10)
* binary (base 2)
* hexadecimal (base 16).

Students should be familiar with expressing a
number’s base using a subscript as follows:

Base 10: Number,g, eg 6719
Base 2: Number,, eg 10011011,
Base 16: Numberg, eg AE4¢

Convert between decimal, binary and
hexadecimal number bases.

Be familiar with, and able to use, hexadecimal
as a shorthand for binary and to understand
why it is used in this way.

4.5.3 Units of information

4.5.3.1 Bits and bytes

Content

Additional information

Know that:

* the bit is the fundamental unit of
information

* a byte is a group of 8 bits.

A bit is either 0 or 1.

Know that the 2" different values can be
represented with n bits.

For example, 3 bits can be configured in 23 =8
different ways.

000, 001, 010, 011, 100, 101, 110, 111

Visit for the most up-to-date specification, resources, support and administration 65

http://

4.5.3.2 Units

Content Additional information

Know that quantities of bytes can be described
using binary prefixes representing powers of 2
or using decimal prefixes representing powers
of 10, eg one kibibyte is written as 1KiB = 210 B
and one kilobyte is written as 1 kB = 103 B.

Know the names, symbols and corresponding
powers of 2 for the binary prefixes:

+ Kkibi, Ki - 210

* mebi, Mi - 220

+ gibi, Gi- 230

+ tebi, Ti- 240
Know the names, symbols and corresponding
powers of 10 for the decimal prefixes:

+ kilo, k - 103

+ mega, M - 106

+ giga, G - 10°

« tera, T-1012

4.5.4 Binary number system

4.5.4.1 Unsigned binary

Content

Historically the terms kilobyte, megabyte, etc
have often been used when kibibyte, mebibyte,
etc are meant.

Additional information

Know the difference between unsigned binary
and signed binary.

Students are expected to be able to convert
between unsigned binary and decimal and vice
versa.

Know that in unsigned binary the minimum and
maximum values for a given number of bits, n,
are 0 and 2" -1 respectively.

4.5.4.2 Unsigned binary arithmetic

Additional information

Be able to:

* add two unsigned binary integers
+ multiply two unsigned binary integers.

66 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.5.4.3 Signed binary using two’s complement

Know that signed binary can be used to
represent negative integers and that one
possible coding scheme is two’s complement.

This is the only representation of negative
integers that will be examined. Students are
expected to be able to convert between signed
binary and decimal and vice versa.

Know how to:

* represent negative and positive integers
in two’s complement

» perform subtraction using two’s
complement

+ calculate the range of a given number of
bits, n.

4.5.4.4 Numbers with a fractional part

Know how numbers with a fractional part can be
represented in:

+ fixed point form in binary in a given
number of bits

+ floating point form in binary in a given
number of bits.

Students are not required to know the Institute
of Electrical and Electronic Engineers (IEEE)
standard, only to know, understand and be able
to use a simplified floating representation
consisting of mantissa + exponent.

Be able to convert for each representation from:

» decimal to binary of a given number of
bits

» binary to decimal of a given number of
bits.

4.5.4.5 Rounding errors

Exam questions on floating point numbers will
use a format in which both the mantissa and
exponent are represented using two's
complement.

Know and be able to explain why both fixed
point and floating point representation of
decimal numbers may be inaccurate.

Use binary fractions. For a real number to be
represented exactly by the binary number
system, it must be capable of being represented
by a binary fraction in the given number of bits.
Some values cannot ever be represented
exactly, for example 0.14;.

Visit for the most up-to-date specification, resources, support and administration 67

http://

4.5.4.6 Absolute and relative errors

Content Additional information

Be able to calculate the absolute error of
numerical data stored and processed in
computer systems.

Be able to calculate the relative error of
numerical data stored and processed in
computer systems.

Compare absolute and relative errors for large
and small magnitude numbers, and humbers
close to one.

4.5.4.7 Range and precision

Additional information

Compare the advantages and disadvantages of
fixed point and floating point forms in terms of
range, precision and speed of calculation.

4.5.4.8 Normalisation of floating point form

Additional information

Know why floating point numbers are
normalised and be able to normalise un-
normalised floating point numbers with positive
or negative mantissas.

4.5.4.9 Underflow and overflow

Content Additional information

Explain underflow and overflow and describe
the circumstances in which they occur.

4.5.5 Information coding systems

4.5.5.1 Character form of a decimal digit

Content Additional information

Differentiate between the character code
representation of a decimal digit and its pure
binary representation.

68 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.5.5.2 ASCII and Unicode

Content Additional information

Describe ASCII and Unicode coding systems
for coding character data and explain why
Unicode was introduced.

4.5.5.3 Error checking and correction

Content Additional information

Describe and explain the use of:

* parity bits

* majority voting
+ checksums

» check digits.

4.5.6 Representing images, sound and other data

4.5.6.1 Bit patterns, images, sound and other data

Content Additional information

Describe how bit patterns may represent other
forms of data, including graphics and sound.

4.5.6.2 Analogue and digital

Content Additional information

Understand the difference between analogue
and digital:

+ data
* signals.

4.5.6.3 Analogue/digital conversion

Content Additional information

Describe the principles of operation of:

» an analogue to digital converter (ADC)
+ adigital to analogue converter (DAC).

Know that ADCs are used with analogue
Sensors.

Visit for the most up-to-date specification, resources, support and administration 69

http://

Content

Additional information

Know that the most common use for a DAC is
to convert a digital audio signal to an analogue
signal.

4.5.6.4 Bitmapped graphics

Content Additional information

Explain how bitmaps are represented.

Explain the following for bitmaps:

* resolution
» colour depth
* size in pixels.

The size of an image is also alternatively
sometimes described as the resolution of an
image.

Size of an image in pixels is width of image in
pixels x height of image in pixels.

Resolution is expressed as number of dots per
inch where a dot is a pixel.

Colour depth = number of bits stored for each
pixel.

Calculate storage requirements for bitmapped
images and be aware that bitmap image files
may also contain metadata.

Ignoring metadata,

storage requirements = size in pixels x colour
depth

where size in pixels is width in pixels x height in
pixels.

Be familiar with typical metadata.

4.5.6.5 Vector graphics

eg width, height, colour depth.

Additional information

Explain how vector graphics represents images
using lists of objects.

The properties of each geometric object/shape
in the vector graphic image are stored as a list.

Give examples of typical properties of objects.

Use vector graphic primitives to create a simple
vector graphic.

70 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.5.6.6 Vector graphics versus bitmapped graphics

Content Additional information

Compare the vector graphics approach with the
bitmapped graphics approach and understand
the advantages and disadvantages of each.

Be aware of appropriate uses of each approach.

4.5.6.7 Digital representation of sound

Content Additional information

Describe the digital representation of sound in
terms of:

» sample resolution
* sampling rate and the Nyquist theorem.

Calculate sound sample sizes in bytes.

4.5.6.8 Musical Instrument Digital Interface (MIDI)

Content Additional information

Describe the purpose of MIDI and the use of
event messages in MIDI.

Describe the advantages of using MIDI files for
representing music.

4.5.6.9 Data compression

Content Additional information

Know why images and sound files are often
compressed and that other files, such as text
files, can also be compressed.

Understand the difference between lossless
and lossy compression and explain the
advantages and disadvantages of each.

Explain the principles behind the following
techniques for lossless compression:

+ run length encoding (RLE)
» dictionary-based methods.

Visit for the most up-to-date specification, resources, support and administration 71

http://

4.5.6.10 Encryption

Understand what is meant by encryption and be
able to define it.

Students should be familiar with the terms
cipher, plaintext and ciphertext.

Caesar and Vernam ciphers are at opposite
extremes. One offers perfect security, the other
doesn’t. Between these two types are ciphers
that are computationally secure — see below.
Students will be assessed on the two types.
Ciphers other than Caesar may be used to
assess students' understanding of the principles
involved. These will be explained and be similar
in terms of computational complexity.

Be familiar with Caesar cipher and be able to
apply it to encrypt a plaintext message and
decrypt a ciphertext.

Be able to explain why it is easily cracked.

Be familiar with Vernam cipher or one-time pad
and be able to apply it to encrypt a plaintext
message and decrypt a ciphertext.

Explain why Vernam cipher is considered as a
cypher with perfect security.

Since the key k is chosen uniformly at random,
the ciphertext c is also distributed uniformly.
The key k must be used once only. The key k is
known as a one-time pad.

Compare Vernam cipher with ciphers that
depend on computational security.

Vernam cipher is the only one to have been
mathematically proved to be completely secure.
The worth of all other ciphers ever devised is
based on computational security. In theory,
every cryptographic algorithm except for
Vernam cipher can be broken, given enough
ciphertext and time.

4.6 Fundamentals of computer systems

4.6.1 Hardware and software

4.6.1.1 Relationship between hardware and software

Understand the relationship between hardware
and software and be able to define the terms:

* hardware
« software.

72 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.6.1.2 Classification of software

Content Additional information

Explain what is meant by:

» system software
» application software.

Understand the need for, and attributes of,
different types of software.

4.6.1.3 System software

Content Additional information

Understand the need for, and functions of the
following system software:

+ operating systems (OSs)

+ utility programs

e libraries
* translators (compiler, assembler,
interpreter).

4.6.1.4 Role of an operating system (0S)

Content Additional information

Understand that a role of the operating system
is to hide the complexities of the hardware.

Know that the OS handles resource
management, managing hardware to allocate
processors, memories and I/O devices among
competing processes.

4.6.2 Classification of programming languages

4.6.2.1 Classification of programming languages

Content Additional information

Show awareness of the development of types of
programming languages and their classification
into low-and high-level languages.

Visit for the most up-to-date specification, resources, support and administration 73

http://

Know that low-level languages are considered
to be:

* machine-code
* assembly language.

Know that high-level languages include
imperative high-level language.

Describe machine-code language and
assembly language.

Understand the advantages and disadvantages
of machine-code and assembly language
programming compared with high-level
language programming.

Explain the term ‘imperative high-level
language’ and its relationship to low-level
languages.

4.6.3 Types of program translator

4.6.3.1 Types of program translator

Understand the role of each of the following:

» assembler
* compiler
* interpreter.

Explain the differences between compilation
and interpretation. Describe situations in which
each would be appropriate.

Explain why an intermediate language such as
bytecode is produced as the final output by
some compilers and how it is subsequently
used.

Understand the difference between source code
and object (executable) code.

74 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.6.4 Logic gates

4.6.4.1 Logic gates

Construct truth tables for the following logic Students should know and be able to use ANSI/
gates: IEEE standard 91-1984 Distinctive shape logic
. NOT gate symbols for these logic gates.

+ AND

+ OR

+ XOR
*+ NAND
+ NOR.

Be familiar with drawing and interpreting logic
gate circuit diagrams involving one or more of
the above gates.

Complete a truth table for a given logic gate
circuit.

Write a Boolean expression for a given logic
gate circuit.

Draw an equivalent logic gate circuit for a given
Boolean expression.

Recognise and trace the logic of the circuits of a
half-adder and a full-adder.

Construct the circuit for a half-adder.

Be familiar with the use of the edge-triggered D- | Knowledge of internal operation of this flip-flop
type flip-flop as a memory unit. is not required.

4.6.5 Boolean algebra

4.6.5.1 Using Boolean algebra

Be familiar with the use of Boolean identities
and De Morgan’s laws to manipulate and
simplify Boolean expressions.

Visit for the most up-to-date specification, resources, support and administration 75

http://

4.7 Fundamentals of computer organisation and

architecture

4.7.1 Internal hardware components of a computer

4.7.1.1 Internal hardware components of a computer

Have an understanding and knowledge of the
basic internal components of a computer
system.

Although exam questions about specific
machines will not be asked, it might be useful to
base this section on the machines used at the
centre.

Understand the role of the following
components and how they relate to each other:

* processor
* main memory
e address bus

« data bus

» control bus

* 1/O controllers.

Understand the need for, and means of,
communication between components. In
particular, understand the concept of a bus and
how address, data and control buses are used.

Be able to explain the difference between von
Neumann and Harvard architectures and
describe where each is typically used.

Embedded systems such as digital signal
processing (DSP) systems use Harvard
architecture processors extensively.

Von Neumann architecture is used extensively
in general purpose computing systems.

Understand the concept of addressable
memory.

76 \Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.7.2 The stored program concept

4.7.2.1 The meaning of the stored program concept

Content Additional information

Be able to describe the stored program
concept: machine code instructions stored in
main memory are fetched and executed serially
by a processor that performs arithmetic and
logical operations.

4.7.3 Structure and role of the processor and its components

4.7.3.1 The processor and its components

Content Additional information

Explain the role and operation of a processor
and its major components:

+ arithmetic logic unit

+ control unit

+ clock

* general-purpose registers

+ dedicated registers, including:
* program counter
* current instruction register
* memory address register
* memory buffer register
» status register.

4.7.3.2 The Fetch-Execute cycle and the role of registers within it

Additional information

Explain how the Fetch-Execute cycle is used to
execute machine code programs including the
stages in the cycle (fetch, decode, execute) and
details of registers used.

4.7.3.3 The processor instruction set

Content Additional information

Understand the term ‘processor instruction set’
and know that an instruction set is processor
specific.

Visit for the most up-to-date specification, resources, support and administration 77

http://

Content Additional information

Know that instructions consist of an opcode and
one or more operands (value, memory address
or register).

4.7.3.4 Addressing modes

A simple model will be used in which the
addressing mode will be incorporated into the
bits allocated to the opcode so the latter defines
both the basic machine operation and the
addressing mode. Students will not be expected
to define opcode, only interpret opcodes in the
given context of a question.

For example, 4 bits have been allocated to the
opcode (3 bits for basic machine operation, eg
ADD, and 1 bit for the addressing mode). 4 bits
have been allocated to the operand, making the
instruction, opcode + operand, 8 bits in length.
In this example, 16 different opcodes are
possible (24 = 16).

Opcode Operand
Basic Addressing
Machine Mode
Operation
|0 0 1 0 0101 |

Content Additional information

Understand and apply immediate and direct
addressing modes.

Immediate addressing: the operand is the
datum.

Direct addressing: the operand is the address of
the datum. Address to be interpreted as
meaning either main memory or register.

78 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.7.3.5 Machine-code/assembly language operations

Content Additional information

Understand and apply the basic machine-code
operations of:

* load
* add
» subtract
» store
* branching (conditional and unconditional)
* compare
* logical bitwise operators (AND, OR, NOT,
XOR)
* logical
+ shift right
 shift left
* halt.

Use the basic machine-code operations above
when machine-code instructions are expressed
in mnemonic form- assembly language, using
immediate and direct addressing.

4.7.3.6 Interrupts

Content Additional information

Describe the role of interrupts and interrupt
service routines (ISRs); their effect on the
Fetch-Execute cycle; and the need to save the
volatile environment while the interrupt is being
serviced.

4.7.3.7 Factors affecting processor performance

Content Additional information

Explain the effect on processor performance of:

* multiple cores

* cache memory

» clock speed

» word length

* address bus width
» data bus width.

Visit for the most up-to-date specification, resources, support and administration 79

http://

4.7.4 External hardware devices

4.7.4.1 Input and output devices

Content Additional information

Know the main characteristics, purposes and
suitability of the devices and understand their
principles of operation.

4.7.4.2 Secondary storage devices

Content

Devices that need to be considered are:

* barcode reader
» digital camera
* laser printer

* RFID.

Additional information

Explain the need for secondary storage within a
computer system.

Know the main characteristics, purposes,
suitability and understand the principles of
operation of the following devices:

* hard disk
» optical disk
+ solid-state disk (SSD).

SSD = NAND flash memory + a controller that
manages pages, and blocks and complexities of
writing. Based on floating gate transistors that
trap and store charge. A block, made up of
many pages, cannot overwrite pages, page has
to be erased before it can be written to but
technology requires the whole block to be
erased. Lower latency and faster transfer
speeds than a magnetic disk drive.

Compare the capacity and speed of access of
various media and make a judgement about
their suitability for different applications.

80 \Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.8 Consequences of uses of computing

4.8.1 Individual (moral), social (ethical), legal and cultural issues and

opportunities

Show awareness of current individual (moral),
social (ethical), legal and cultural opportunities
and risks of computing.

Understand that:

» developments in computer science and
the digital technologies have dramatically
altered the shape of communications and
information flows in societies, enabling
massive transformations in the capacity
to:

* monitor behaviour

* amass and analyse personal
information

+ distribute, publish, communicate and
disseminate personal information.

» computer scientists and software
engineers therefore have power, as well
as the responsibilities that go with it, in the
algorithms that they devise and the code
that they deploy.

» software and their algorithms embed
moral and cultural values.

* the issue of scale, for software the whole
world over, creates potential for individual
computer scientists and software
engineers to produce great good, but with
it comes the ability to cause great harm.

Be able to discuss the challenges facing
legislators in the digital age.

Teachers may wish to employ two very powerful
techniques, hypotheticals and case studies, to
engage students in the issues.

Hypotheticals allow students to isolate quickly
important ethical principles in an artificially
simplified context. For example, a teacher might
ask students to explain and defend how, as a
Google project manager, they would evaluate a
proposal to bring Google’s Street View
technology to a remote African village. What
questions should be asked? Who should be
consulted? What benéefits, risks and safeguards
considered? What are the trade-offs?

Case studies allow students to confront the
tricky interplay between the sometimes
competing ethical values and principles relevant
in real world settings. For example, the Google
Street View case might be used to tease out the
ethical conflicts between individual and cultural
expectations, the principle of informed consent,
Street View’s value as a service, its potential
impact on human perceptions and behaviours,
and its commercial value to Google and its
shareholders.

There are many resources available on the
Internet to support teaching of this topic.

Visit for the most up-to-date specification, resources, support and administration 81

http://

4.9 Fundamentals of communication and networking

4.9.1 Communication

4.9.1.1 Communication methods

Additional information

Define serial and parallel transmission methods
and discuss the advantages of serial over
parallel transmission.

Define and compare synchronous and
asynchronous data transmission.

Describe the purpose of start and stop bits in
asynchronous data transmission.

4.9.1.2 Communication basics

Content Additional information

Define:

* baud rate
* bit rate

* bandwidth
* latency

» protocol.

Differentiate between baud rate and bit rate. Bit rate can be higher than baud rate if more
than one bit is encoded in each signal change.

Understand the relationship between bit rate Bit rate is directly proportionate to bandwidth.
and bandwidth.

82 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.9.2 Networking

4.9.2.1 Network topology

Understand:

» physical star topology
* logical bus network topology

» differentiate between them
» explain their operation

4.9.2.2 Types of networking between hosts

A network physically wired in star topology can
behave logically as a bus network by using a
bus protocol and appropriate physical switching.

Explain the following and describe situations
where they might be used:

* peer-to-peer networking
* client-server networking.

4.9.2.3 Wireless networking

In a peer-to-peer network, each computer has
equal status. In a client-server network, most
computers are nominated as clients and one or
more as servers. The clients request services
from the servers, which provide these services,
for example file server, email server.

Explain the purpose of WiFi.

A wireless local area network that is based on
international standards.

Used to enable devices to connect to a network
wirelessly.

Be familiar with the components required for
wireless networking.

Wireless network adapter.

Wireless access point.

Be familiar with how wireless networks are
secured.

Strong encryption of transmitted data using
WPA (Wifi Protected Access)/WPA2, SSID
(Service Set Identifier) broadcast disabled,
MAC (Media Access Control) address white list.

Explain the wireless protocol Carrier Sense
Multiple Access with Collision Avoidance
(CSMA/CA) with and without Request to Send/
Clear to Send (RTS/CTS).

Knowledge of Carrier Sense Multiple Access/
Collection Detection (CSMA/CD) as used in, for
example, Ethernet, is not required.

Be familiar with the purpose of Service Set
Identifier (SSID).

Visit for the most up-to-date specification, resources, support and administration 83

http://

4.9.3 The Internet

4.9.3.1 The Internet and how it works

Understand the structure of the Internet.

Understand the role of packet switching and
routers.

Know the main components of a packet.

Define:

e router
* gateway.

Consider where and why they are used.

Explain how routing is achieved across the
Internet.

Describe the term 'uniform resource locator'
(URL) in the context of internetworking.

Explain the terms ‘fully qualified domain name
(FQDN), ‘domain name’ and ‘IP address’.

Describe how domain names are organised.

Understand the purpose and function of the
domain service and its reliance on the Domain
Name Server (DNS) system.

Explain the service provided by Internet
registries and why they are needed.

4.9.3.2 Internet security

Understand how a firewall works (packet
filtering, proxy server, stateful inspection).

Explain symmetric and asymmetric (private/
public key) encryption and key exchange.

Explain how digital certificates and digital
signatures are obtained and used.

84 \Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

Content Additional information

Discuss worms, trojans and viruses, and the
vulnerabilities that they exploit.

Discuss how improved code quality, monitoring
and protection can be used to address worms,
trojans and viruses.

4.9.4 The Transmission Control Protocol/Internet Protocol (TCP/IP)
protocol

4.9.4.1 TCP/IP

Content Additional information

Describe the role of the four layers of the
TCP/IP stack (application, transport, network,
link).

Describe the role of sockets in the TCP/IP
stack.

Be familiar with the role of MAC (Media Access
Control) addresses.

Explain what the well-known ports and client
ports are used for and the differences between
them.

4.9.4.2 Standard application layer protocols

Content Additional information

Be familiar with the following protocols:

+ FTP (File Transfer Protocol)

* HTTP (Hypertext Transfer Protocol)

+ HTTPS (Hypertext Transfer Protocol
Secure)

+ POP3 (Post Office Protocol (v3))

+ SMTP (Simple Mail Transfer Protocol)

* SSH (Secure Shell).

Be familiar with FTP client software and an FTP
server, with regard to transferring files using
anonymous and non-anonymous access.

Be familiar with how SSH is used for remote
management.

Visit for the most up-to-date specification, resources, support and administration 85

http://

Content Additional information

Know how an SSH client is used to make a
TCP connection to a remote port for the
purpose of sending commands to this port using
application level protocols such as GET for
HTTP, SMTP commands for sending email and
POP3 for retrieving email.

Be familiar with using SSH to log in securely to
a remote computer and execute commands.

Explain the role of an email server in retrieving
and sending email.

Explain the role of a web server in serving up
web pages in text form.

Understand the role of a web browser in
retrieving web pages and web page resources
and rendering these accordingly.

4.9.4.3 IP address structure

Content Additional information

Know that an IP address is split into a network
identifier part and a host identifier part.

4.9.4.4 Subnet masking

Content Additional information

Know that networks can be divided into subnets
and know how a subnet mask is used to identify
the network identifier part of the IP address.

4.9.4.5 |P standards

Content Additional information

Know that there are currently two standards of
IP address, v4 and v6.

Know why v6 was introduced.

86 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.9.4.6 Public and private IP addresses

Content Additional information

Distinguish between routable and non-routable
IP addresses.

4.9.4.7 Dynamic Host Configuration Protocol (DHCP)

Content Additional information

Understand the purpose and function of the
DHCP system.

4.9.4.8 Network Address Translation (NAT)

Additional information

Explain the basic concept of NAT and why it is
used.

4.9.4.9 Port forwarding

Content Additional information

Explain the basic concept of port forwarding
and why it is used.

4.9.4.10 Client server model

Content Additional information

Be familiar with the client server model. Client sends a request message to server,
server responds to request by replying with a
response message to client.

Be familiar with the Websocket protocol and The Websocket specification defines an API
know why it is used and where it is used. (Application Programming Interface)
establishing a full-duplex 'socket' connection
between a web browser and a server over TCP.
This means that there is a persistent connection
between client and server, allowing both parties
to send data at any time.

Visit for the most up-to-date specification, resources, support and administration 87

http://

Be familiar with the principles of Web CRUD
Applications and REST:

CRUD is an acronym for:

* C-—Create
* R —Retrieve
*+ U - Update
* D - Delete.

* REST enables CRUD to be mapped to
database functions (SQL) as follows:
GET — SELECT

POST — INSERT

DELETE — DELETE

PUT — UPDATE.

Students should understand the principles:

database connected to browser using
REST — Representational State Transfer -
which relies on HTTP request methods
REST allows JavaScript to talk to server
through HTTP

REST API (Application Programming
Interface) created and run on server,
browser Javascript calls API

JSON (JavaScript Object Notation) or
XML can be used to transmit data
between a server and web application
Javascript referenced by HTML file, eg
index.html, is run in browser.

Compare JSON (Java script object notation)
with XML.

4.9.4.11 Thin- versus thick-client computin

JSON compared with XML is:

easier for a human to read
more compact
easier to create

easier for computers to parse and
therefore quicker to parse.

(@]

Compare and contrast thin-client computing
with thick-client computing.

4.10 Fundamentals of databases

4.10.1 Conceptual data models and entity relationship modelling

Produce a data model from given data
requirements for a simple scenario involving
multiple entities.

Produce entity relationship diagrams
representing a data model and entity
descriptions in the form: Entity1 (Attribute1,
Attribute2,).

Underlining can be used to identify the
attribute(s) which form the entity identifier.

88 \Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.10.2 Relational databases

Content Additional information

Explain the concept of a relational database.

Be able to define the terms:

« attribute

* primary key

* composite primary key
» foreign key.

4.10.3 Database design and normalisation techniques

Additional information

Normalise relations to third normal form. Students should know what properties are
possessed by a relation in third normal form.

Understand why databases are normalised. |

4.10.4 Structured Query Language (SQL)

Content Additional information

Be able to use SQL to retrieve, update, insert
and delete data from multiple tables of a
relational database.

Be able to use SQL to define a database table.

4.10.5 Client server databases

Content Additional information

Know that a client server database system Concurrent access can result in the problem of
provides simultaneous access to the database |[updates being lost if two clients edit a record at
for multiple clients. the same time. This problem can be managed

by the use of record locks, serialisation,

Know how concurrent access can be controlled | ;
timestamp ordering, commitment ordering.

to preserve the integrity of the database.

Visit for the most up-to-date specification, resources, support and administration 89

http://

4.11 Big Data
4.11.1 Big Data

Know that 'Big Data' is a catch-all term for data
that won't fit the usual containers. Big Data can
be described in terms of:

» volume - too big to fit into a single server

* velocity - streaming data, milliseconds to
seconds to respond

+ variety - data in many forms such as
structured, unstructured, text, multimedia.

Whilst its size receives all the attention, the
most difficult aspect of Big Data really involves
its lack of structure. This lack of structure poses
challenges because:

» analysing the data is made significantly
more difficult

» relational databases are not appropriate
because they require the data to fit into a
row-and-column format.

Machine learning techniques are needed to
discern patterns in the data and to extract
useful information.

'Big' is a relative term, but size impacts when
the data doesn't fit onto a single server because
relational databases don’t scale well across
multiple machines.

Data from networked sensors, smartphones,
video surveillance, mouse clicks etc are
continuously streamed.

Know that when data sizes are so big as not to
fit on to a single server:

* the processing must be distributed across
more than one machine

+ functional programming is a solution,
because it makes it easier to write correct
and efficient distributed code.

Know what features of functional programming
make it easier to write:

e correct code

¢ code that can be distributed to run across
more than one server.

Functional programming languages support:

¢ immutable data structures
« statelessness
* higher-order functions.

Be familiar with the:

» fact-based model for representing data

» graph schema for capturing the structure
of the dataset

* nodes, edges and properties in graph
schema.

Each fact within a fact-based model captures a
single piece of information.

90 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.12 Fundamentals of functional programming

4.12.1 Functional programming paradigm

4.12.1.1 Function type

Know that a function, f, has a function type

f: A — B (where the type is A — B, Ais the
argument type, and B is the result type).

Know that A is called the domain and B is called
the co-domain.

Know that the domain and co-domain are
always subsets of objects in some data type.

4.12.1.2 First-class object

Loosely speaking, a function is a rule that, for
each element in some set A of inputs, assigns
an output chosen from set B, but without
necessarily using every member of B. For
example,

f: {a,b,c,...z} — {0,1,2,...,25} could use the rule
that maps ato 0, b to 1, and so on, using all
values which are members of set B.

The domain is a set from which the function’s
input values are chosen.

The co-domain is a set from which the
function’s output values are chosen. Not all of
the co-domain’s members need to be outputs.

Know that a function is a first-class object in
functional programming languages and in
imperative programming languages that support
such objects. This means that it can be an
argument to another function as well as the
result of a function call.

First-class objects (or values) are objects which
may:

* appear in expressions

* be assigned to a variable

* be assigned as arguments

* be returned in function calls.

For example, integers, floating-point values,
characters and strings are first class objects in
many programming languages.

Visit for the most up-to-date specification, resources, support and administration 91

http://

4.12.1.3 Function application

Know that function application means a function
applied to its arguments.

4.12.1.4 Partial function application

The process of giving particular inputs to a
function is called function application, for
example add(3,4) represents the application of
the function add to integer arguments 3 and 4.

The type of the function is
f: integer x integer — integer

where integer x integer is the Cartesian product
of the set integer with itself.

Although we would say that function f takes two
arguments, in fact it takes only one argument,
which is a pair, for example (3,4).

Know what is meant by partial function
application for one, two and three argument
functions and be able to use the notations
shown opposite.

The function add takes two infegers as
arguments and gives an integer as a result.
Viewed as follows in the partial function
application scheme:

add: integer — (integer — integer)

add 4 returns a function which when applied to
another integer adds 4 to that integer.

The brackets may be dropped so function add
becomes add:

integer — integer — integer

The function add is now viewed as taking one
argument after another and returning a result of
data type integer.

92 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.12.1.5 Composition of functions

Content Additional information

Know what is meant by composition of The operation functional composition combines
functions. two functions to get a new function.

Given two functions
ffA— B
gB—C

function g o f, called the composition of g and f, is
a function whose domain is A and co-domain is C.

If the domain and co-domains of fand g are R,
and f(x) = (x + 2) and g(y) = y°. Then

gof=(x+2)?

fis applied first and then g is applied to the result
returned by f.

4.12.2 Writing functional programs

4.12.2.1 Functional language programs

Content Additional information
Show experience of constructing simple The following is a list of functional programming
programs in a functional programming languages that could be used:
language. - Haskell
+ Standard ML
+ Scheme
+ Lisp.

Other languages with built-in support for
programming in a functional paradigm as well as
other paradigms are:

* Python

- F#

« C#

* Scala

+ Java 8

* Delphi XE versions onwards
* VB.NET 2008 onwards.

Higher-order functions. A function is higher-order if it takes a function as
an argument or returns a function as a result, or
does both.

Visit for the most up-to-date specification, resources, support and administration 93

http://

Have experience of using the following in a
functional programming language:

* map
o filter
* reduce or fold.

map is the name of a higher-order function that
applies a given function to each element of a list,
returning a list of results.

filter is the name of a higher-order function that
processes a data structure, typically a list, in some
order to produce a new data structure containing
exactly those elements of the original data
structure that match a given condition.

reduce or fold is the name of a higher-order
function which reduces a list of values to a single
value by repeatedly applying a combining function
to the list values.

4.12.3 Lists in functional programming

4.12.3.1 List processing

Be familiar with representing a list as a
concatenation of a head and a tail.

Know that the head is an element of a list and
the tail is a list.

Know that a list can be empty.
Describe and apply the following operations:

* return head of list
 return tail of list

* test for empty list

» return length of list

» construct an empty list

» prepend an item to a list
* append an item to a list.

Have experience writing programs for the list
operations mentioned above in a functional
programming language or in a language with
support for the functional paradigm.

For example, in Haskell the list [4, 3, 5] can be
written in the form head:tail where head is the
first item in the list and tail is the remainder of
the list. In the example, we have 4:[3, 5]. We
call 4 the head of the list and [3, 5] the tail.

[] is the empty list.

94 \Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.13 Systematic approach to problem solving

4.13.1 Aspects of software development

4.13.1.1 Analysis

Be aware that before a problem can be solved,
it must be defined, the requirements of the
system that solves the problem must be
established and a data model created.
Requirements of system must be established by
interaction with the intended users of the
system. The process of clarifying requirements
may involve prototyping/agile approach.

4.13.1.2 Design

Students should have experience of using
abstraction to model aspects of the external
world in a program.

Be aware that before constructing a solution,
the solution should be designed and specified,
for example planning data structures for the
data model, designing algorithms, designing an
appropriate modular structure for the solution
and designing the human user interface.

Students should have sufficient experience of
successfully structuring programs into modular
parts with clear documented interfaces to
enable them to design appropriate modular
structures for solutions.

Be aware that design can be an iterative
process involving a prototyping/agile approach.

4.13.1.3 Implementation

Be aware that the models and algorithms need
to be implemented in the form of data structures
and code (instructions) that a computer can
understand.

Students should have sufficient practice of
writing, debugging and testing programs to
enable them to develop the skills to articulate
how programs work arguing for their
correctness and efficiency using logical
reasoning, test data and user feedback.

Be aware that the final solution may be arrived
at using an iterative process employing
prototyping/an agile approach with a focus on
solving the critical path first.

Visit for the most up-to-date specification, resources, support and administration 95

http://

4.13.1.4 Testing

Be aware that the implementation must be tested | Students should have practical experience
for the presence of errors, using selected test data | of designing and applying test data, normal,
covering normal (typical), boundary and erroneous |boundary and erroneous to the testing of
data. programs so that they are familiar with these
test data types and the purpose of testing.

It should also undergo acceptance testing with the | Students will only need to provide evidence
intended user(s) of the system to ensure that the of user feedback not details of the tests
intended solution meets its specification. carried out by the end user.

4.13.1.5 Evaluation

Know the criteria for evaluating a computer
system.

4.14 Non-exam assessment - the computing practical
project

4.14.1 Overview

4.14.1.1 Purpose of the project

The project allows students to develop their practical skills in the context of solving a realistic
problem or carrying out an investigation. The project is intended to be as much a learning
experience as a method of assessment; students have the opportunity to work independently on a
problem of interest over an extended period, during which they can extend their programming skills
and deepen their understanding of computer science.

The most important skill that should be assessed through the project is a student's ability to create
a programmed solution to a problem or investigation. This is recognised by allocating 42 of the 75
available marks to the technical solution and a lower proportion of marks for supporting
documentation to reflect the expectation that reporting of the problem, its analysis, the design of a
solution or plan of an investigation and testing and evaluation will be concise.

4.14.1.2 Types of problem/investigation

Students are encouraged to choose a problem to solve or investigate that will interest them and
that relates to a field that they have some knowledge of. There are no restrictions on the types of
problem/investigation that can be submitted or the development tools (for example programming

96 \Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

language) that can be used. The two key questions to ask when selecting a problem/investigation
are:

» Does the student have existing knowledge of the field, or are they in a position to find out
about it?

* Is a solution to the problem/investigation likely to give the student the opportunity to
demonstrate the necessary degree of technical skill to achieve a mark that reflects their
potential?

Some examples of the types of problem to solve or investigate are:

* a simulation for example, of a business or scientific nature, or an investigation of a well-
known problem such as the game of life
* a solution to a data processing problem for an organisation, such as membership systems

+ the solution of an optimisation problem, such as production of a rota, shortest-path problems
or route finding

* acomputer game

* an application of artificial intelligence

* a control system, operated using a device such as an Arduino board

* a website with dynamic content, driven by a database back-end

* an app for a mobile phone or tablet

* an investigation into an area of computing, such as rendering a three-dimensional world on
screen

* investigating an area of data science using, for example, Twitter feed data or online public
data sets

* investigating machine learning algorithms.

There is an expectation that within a centre, the problems chosen by students to solve or
investigate will be sufficiently different to avoid the work of one student informing the work of
another because they are working on the same problem or investigation. Teachers will be required
to record on the Candidate Record Form for each student that they have followed this guideline. If
in any doubt on whether problems chosen by students have the potential to raise this issue, please
contact your AQA advisor.

Table 1 and Table 2 show the technical skills and coding styles required for an A-level standard
project. If a problem/investigation is selected that is not of A-level standard then the marks
available in each section will be restricted.

4.14.1.3 Project documentation structure

The project is assessed in five sections. The table below lists the maximum available mark for
each section of the project:

1 Analysis 9
2 Documented design 12
3 Technical solution 42
4 Testing 8
5 Evaluation 4
Total 75

Visit for the most up-to-date specification, resources, support and administration 97

http://

For marking purposes, the project documentation should be presented in the order indicated in the
table above. The table does not imply that students are expected to follow a traditional systems life
cycle approach when working on their projects, whereby a preceding stage must be completed
before the next can be tackled. It is recognised that this approach is unsuited to the vast majority of
project work, and that project development is likely to be an iterative process, with earlier parts of
the project being revisited as a result of discoveries made in later parts. Students should be
encouraged to start prototyping and writing code early on in the project process. A recommended
strategy is to tackle the critical path early in the project development process. The critical path is
the part of the project that everything else depends on for a working system or a complete
investigation result to be achieved.

4.14.2 Using a level of response mark scheme

Level of response mark schemes are broken down into a number of levels, each of which has a
descriptor. The descriptor for the level shows the average performance for the level. There are a
range of marks in each level. The descriptor for the level represents a typical mid-mark
performance in that level.

Before applying the mark scheme to a student’s project, read it through and annotate it to show the
qualities that are being looked for. You can then apply the mark scheme.

4.14.2.1 Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the performance
in that section of the project meets the descriptor for that level. The descriptor for the level
indicates the different qualities that might be seen in the student’s work for that level. If it meets the
lowest level then go to the next one and decide if it meets this level, and so on, until you have a
match between the level descriptor and the work. With practice and familiarity you will find you will
be able to quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the work rather than any small or
specific parts where the student has not performed quite as the level descriptor. If the work covers
different aspects of different levels of the mark scheme you should use a best fit approach for
defining the level and then use the variability of the response to help decide the mark within the
level. ie if the response is predominantly level 3 with a small amount of level 4 material it would be
placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

4.14.2.2 Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The exemplar materials used for
standardisation will help. This work will have been awarded a mark by AQA. You can compare your
student’s work with the exemplar to determine if it is the same standard, better or worse. You can
then use this to allocate a mark for the work based on AQA's mark on the exemplar.

You may well need to read back through the work as you apply the mark scheme to clarify points
and assure yourself that the level and the mark are appropriate.

Work which contains nothing of relevance to the project area being assessed must be awarded no
marks for that area.

98 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.14.3 Marking criteria

4.14.3.1 Analysis (9 marks)

3 7-9 Fully or nearly fully scoped analysis of a real problem,
presented in a way that a third party can understand.

Requirements fully documented in a set of measurable and
appropriate specific objectives, covering all required
functionality of the solution or areas of investigation.

Requirements arrived at by considering, through dialogue,
the needs of the intended users of the system, or recipients
of the outcomes for investigative projects.

Problem sufficiently well modelled to be of use in
subsequent stages.

2 4-6 Well scoped analysis (but with some omissions that are not
serious enough to undermine later design) of a real
problem.

Most, but not all, requirements documented in a set of, in
the main, measurable and appropriate specific objectives
that cover most of the required functionality of a solution or
areas of investigation.

Requirements arrived at, in the main, by considering,
through dialogue, the needs of the intended users of the
system, or recipients of the outcomes for investigative
projects.

Problem sufficiently well modelled to be of use in
subsequent stages.

1 1-3 Partly scoped analysis of a problem.

Requirements partly documented in a set of specific
objectives, not all of which are measurable or appropriate
for developing a solution. The required functionality or areas
of investigation are only partly addressed.

Some attempt to consider, through dialogue, the needs of
the intended users of the system, or recipients of the
outcomes for investigative projects.

Problem partly modelled and of some use in subsequent
stages.

Visit for the most up-to-date specification, resources, support and administration 99

http://

4.14.3.2 Documented design (12 marks)

4 10-12 Fully or nearly fully articulated design for a real problem,
that describes how all or almost all of the key aspects of the
solution/investigation are to be structured/are structured.

3 7-9 Adequately articulated design for a real problem that
describes how most of the key aspects of the solution/
investigation are to be structured/are structured.

2 4-6 Partially articulated design for a real problem that describes
how some aspects of the solution/investigation are to be
structured/are structured.

1 1-3 Inadequate articulation of the design of the solution so that it
is difficult to obtain a picture of how the solution/
investigation is to be structured/is structured without
resorting to looking directly at the programmed solution.

4.14.3.3 Technical solution (42 marks)

4.14.3.3.1 Completeness of solution (15 marks)

3 11-15 A system that meets almost all of the requirements of a
solution/an investigation (ignoring any requirements that go
beyond the demands of A-level).

2 6-10 A system that achieves many of the requirements but not
all. The marks at the top end of the band are for systems
that include some of the most important requirements.

1 1-5 A system that tackles some aspects of the problem or
investigation.

100 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.14.3.3.2 Techniques used (27 marks)

3 19-27 The techniques used are Above average performance: Group
appropriate and demonstrate a level | A equivalent algorithms and model
of technical skill equivalent to those |programmed more than well to
listed in Group A in Table 1. excellent; all or almost all excellent
coding style characteristics; more

Program(s) demonstrate(s) that the than to highly effective solution.

skill required for this level has been
applied sufficiently to demonstrate | Average performance: Group A
proficiency. equivalent algorithms and/or model
programmed well; majority of
excellent coding style
characteristics; an effective solution.

Below average performance: Group
A equivalent algorithms and/or
model programmed just adequately
to fully adequate; some excellent
coding style characteristics; less
than effective to fairly effective
solution.

2 10-18 The techniques used are Above average performance: Group
appropriate and demonstrate a level | B equivalent algorithms and model
of technical skill equivalent to those |programmed more than well to
listed in Group B in Table 1. excellent; majority of excellent
coding style characteristics; more

Program(s) demonstrate(s) that the than to highly effective solution.

skill required for this level has been
applied sufficiently to demonstrate | Average performance: Group B
proficiency. equivalent algorithms and/or model
programmed well; some excellent
coding style characteristics; effective
solution.

Below average performance: Group
B equivalent algorithms and/or
model programmed just adequately
to fully adequate; all or almost all
relevant good coding style
characteristics but possibly one
example at most of excellent
characteristics; less than effective to
fairly effective solution.

Visit for the most up-to-date specification, resources, support and administration 101

http://

1-9

The techniques used demonstrate a
level of technical skill equivalent to

Above average performance: Group
C equivalent model and algorithms

those listed in Group C in Table 1. programmed more than well to
excellent; almost all relevant good
coding style characteristics; more
than to highly effective simple

solution.

Program(s) demonstrate(s) that the
skill required for this level has been
applied sufficiently to demonstrate
proficiency.

Average performance: Group C
equivalent model and algorithms
programmed well; some relevant
good coding style characteristics;
effective simple solution.

Below average performance: Group
C equivalent algorithms and/or
model programmed in a severely
limited to limited way; basic coding
style characteristics; trivial to lacking
in effectiveness simple solution.

Select the band, 1, 2 or 3 with level of demand description that best matches the techniques and
skill that the student’s program attempts to cover. The emphasis is on what the student has
actually achieved that demonstrates proficiency at this level rather than what the student has set
out to use and do but failed to demonstrate, eg because of poor execution. Check the proficiency
demonstrated in the program. If the student fails to demonstrate proficiency at the initial level of
choice, drop down a level to see if what the student has done demonstrates proficiency at this level
for the lower demand until a match is obtained. Table 1 is indicative of the standard required and is
not to be treated as just a list of things for students to select from and to be automatically credited
for including in their work.

As indicated above, having selected the appropriate level for techniques used and proficiency in
their use, the exact mark to award should be determined based upon:

« the extent to which the criteria for the mark band have been achieved

» the quality of the coding style that the student has demonstrated (see Table 2 for
exemplification of what is expected)

» the effectiveness of the solution.

102 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.14.3.4 Example technical skills

4.14.3.4.1 Table 1: Example technical skills

Complex data model in database (eg
several interlinked tables)

Hash tables, lists, stacks, queues, graphs,
trees or structures of equivalent standard

Files(s) organised for direct access

Complex scientific/mathematical/robotics/
control/business model

Complex user-defined use of object-
orientated programming (OOP) model, eg
classes, inheritance, composition,
polymorphism, interfaces

Complex client-server model

Cross-table parameterised SQL
Aggregate SQL functions
User/CASE-generated DDL script

Graph/Tree Traversal
List operations

Linked list maintenance
Stack/Queue Operations

Hashing

Advanced matrix operations
Recursive algorithms

Complex user-defined algorithms (eg
optimisation, minimisation, scheduling,
pattern matching) or equivalent difficulty

Mergesort or similarly efficient sort

Dynamic generation of objects based on
complex user-defined use of OOP model

Server-side scripting using request and
response objects and server-side
extensions for a complex client-server
model

Calling parameterised Web service APIs
and parsing JSON/XML to service a
complex client-server model

Visit for the most up-to-date specification, resources, support and administration 103

http://

Simple data model in database (eg two or
three interlinked tables)

Multi-dimensional arrays
Dictionaries

Records

Text files

File(s) organised for sequential access

Simple scientific/mathematical /robotics/
control/business model

Simple OOP model

Simple client-server model

Single table or non-parameterised SQL

Bubble sort

Binary search

Writing and reading from files

Simple user defined algorithms (eg a range
of mathematical/statistical calculations)

Generation of objects based on simple
OOP model

Server-side scripting using request and
response objects and server-side
extensions for a simple client-server model

Calling Web service APIs and parsing
JSON/XML to service a simple client-
server model

Single-dimensional arrays
Appropriate choice of simple data types

Single table database

Linear search

Simple mathematical calculations (eg
average)

Non-SQL table access

Note that the contents of Table 1 are examples, selected to illustrate the level of demand of the
technical skills that would be expected to be demonstrated in each group. The use of alternative
algorithms and data models is encouraged. If a project cannot easily be marked against Table 1
(for example, a project with a considerable hardware component) then please consult your AQA
non-exam assessment Adviser or provide a full explanation of how you have arrived at the mark for
this section when submitting work for moderation.

104 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.14.3.4.2 Table 2: Coding styles

Excellent Modules (subroutines) with appropriate interfaces.

Loosely coupled modules (subroutines) — module code interacts with other
parts of the program through its interface only.

Cohesive modules (subroutines) — module code does just one thing.

Modules(collections of subroutines) — subroutines with common purpose
grouped.

Defensive programming.

Good exception handling.

Good Well-designed user interface
Modularisation of code

Good use of local variables
Minimal use of global variables
Managed casting of types

Use of constants

Appropriate indentation
Self-documenting code
Consistent style throughout

File paths parameterised

Basic Meaningful identifier names

Annotation used effectively where required

The descriptions in Table 2 are cumulative, ie for a program to be classified as excellent it would be
expected to exhibit the characteristics listed as excellent, good and basic not just those listed as
excellent.

4.14.3.5 Testing (8 marks)

4 7-8 Clear evidence, in the form of carefully selected
representative samples, that thorough testing has been
carried out. This demonstrates the robustness of the
complete or nearly complete solution/thoroughness of
investigation and that the requirements of the solution/
investigation have been achieved.

Visit for the most up-to-date specification, resources, support and administration 105

http://

3 5-6 Extensive testing has been carried out, but the evidence
presented in the form of representative samples does not
make clear that all of the core requirements of the solution/
investigation have been achieved. This may be due to some
key aspects not being tested or because the evidence is not
always presented clearly.

2 3-4 Evidence in the form of representative samples of
moderately extensive testing, but falling short of
demonstrating that the requirements of the solution/
investigation have been achieved and the solution is robust/
investigation thorough.

The evidence presented is explained.

1 1-2 A small number of tests have been carried out, which
demonstrate that some parts of the solution work/some
outcomes of the investigation are achieved.

The evidence presented may not be entirely clear.

Evidence for the testing section may be produced after the system has been fully coded or during
the coding process. It is expected that tests will either be planned in a test plan or that the tests will
be fully explained alongside the evidence for them. Only carefully selected representative samples
are required.

4.14.3.6 Evaluation (4 marks)

4 4 Full consideration given to how well the outcome meets all
of its requirements.

How the outcome could be improved if the problem was
revisited is discussed and given detailed consideration.

Independent feedback obtained of a useful and realistic
nature, evaluated and discussed in a meaningful way.

3 3 Full or nearly full consideration given to how well the
outcome meets all of its requirements.

How the outcome could be improved if the problem was
revisited is discussed but consideration given is limited.

Independent feedback obtained of a useful and realistic
nature but is not evaluated and discussed in a meaningful
way, if at all.

106 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

2 2 The outcome is discussed but not all aspects are fully
addressed either by omission or because some of the
requirements have not been met and those requirements
not met have been ignored in the evaluation.

No independent feedback obtained or if obtained is not
sufficiently useful or realistic to be evaluated in a
meaningfully way even if attempted.

1 1 Some of the outcomes are assessed but only in a superficial
way.

No independent feedback obtained or if obtained is so basic
as to be not worthy of evaluation.

4.14.4 Project tasks that are not of A-level standard

If the task (problem or investigation) selected for a project is not of A-level standard, mark the
project against the criteria given, but adjust, the mark awarded downwards by two marking levels
(two marks in the case of evaluation) in each section for all but the technical solution. You should
have already taken the standard into account for this, by directly applying the criteria. For example,
if a student had produced a 'fully or nearly fully articulated design of a real problem describing how
solution is to be structured/is structured'. This would, for an A-level standard project, achieve a
mark in Level Four for Documented Design (10-12 marks). If the problem selected was too simple
to be of A-level standard but the same criteria had been fulfilled, shift the mark awarded down by
two levels, into Level Two, an award of 4-6 marks. If a downward shift by two levels is not possible,
then a mark in the lowest level should be awarded.

4.14.5 Guide to non-exam assessment documentation

4.14.5.1 Analysis

Students are expected to:

» produce a clear statement that describes the problem area and specific problem that is being
solved/investigated

+ outline how they researched the problem

+ state for whom the problem is being solved/investigated

» provide background in sufficient detail for a third party to understand the problem being
solved/investigated

» produce a numbered list of measurable, "appropriate" specific objectives, covering all
required functionality of the solution or areas of investigation (Appropriate means that the
specific objectives are single purpose and at a level of detail that is without ambiguity.)

+ report any modelling of the problem that will inform the Design stage, for example a graph/
network model of Facebook connections or an E-R model.

A fully scoped analysis is one that has:

* researched the problem thoroughly
* has clearly defined the problem being solved/investigated
+ omitted nothing that is relevant to subsequent stages

Visit for the most up-to-date specification, resources, support and administration 107

http://

» statements of objectives which clearly and unambiguously identify the scope of the project
* modelled the problem for the Design stage where this is possible and necessary.

4.14.5.2 Design

Students are expected to articulate their design in a manner appropriate to the task and with
sufficient clarity for a third party to understand how the key aspects of the solution/investigation are
structured and on what the design will rely, eg use of numerical and scientific package libraries,
data visualisation package library, particular relational database and/or web design framework. The
emphasis is on communicating the design; therefore it is acceptable to provide a description of the
design in a combination of diagrams and prose as appropriate, as well as a description of
algorithms, SQL, data structures, database relations as appropriate, and using relevant technical
description languages, such as pseudo-code. Where design of a user interface is relevant, screen
shots of actual screens are acceptable.

4.14.5.3 Technical solution

Students should provide program listing(s) that demostrate their technical skill. The program
listing(s) should be appropriately annotated and self-documenting (an approach that uses
meaningful identifiers, with well structured code that minimises instances where program
comments are necessary).

Students should present their work in a way that will enable a third party to discern the quality and
purpose of the coding. This could take the form of:

* an overview guide which amongst other things includes the names of entities such as
executables, data filenames/urls, database names, pathnames so that a third party can, if
they so desire, run the solution/investigation

» explanations of particularly difficult-to-understand code sections; a careful division of the
presentation of the code listing into appropriately labelled sections to make navigation as
easy as possible for a third party reading the code listing.

Achievement of the latter, to an extent, is linked to the skill in applying a structured approach during
the course of developing the solution or carrying out the investigation.

4.14.5.4 Testing

Students must provide and present in a structured way for example in tabular form, clear evidence
of testing. This should take the form of carefully selected and representative samples, which
demonstrate the robustness of the complete, or nearly complete, solution/thoroughness of
investigation and which demonstrate that the requirements of the solution/investigation have been
achieved. The emphasis should be on producing a representative sample in a balanced way and
not on recording every possible test and test outcome. Students should explain the tests carried
out alongside the evidence for them. This could take the form of:

* an introduction and overview
» the test performed

* its purpose if not self-evident
+ the test data

+ the expected test outcome

» the actual outcome with a sample of the evidence, for example screen shots of before and
after the test, etc, sampled in order to limit volume.

108 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

4.14.5.5 Evaluation

Students should consider and assess how well the outcome meets its requirements. Students
should obtain independent feedback on how well the outcome meets its requirements and discuss
this feedback. Some of this feedback could be generated during prototyping. If so, this feedback,
and how/why it was taken account must be presented and referenced so it can be found easily.

Students should also consider and discuss how the outcome could be improved more realistically if
the problem/investigation were to be revisited.

4.14.6 Assessment objective breakdown for non-exam assessment

Analysis 9 9 AO2b
Design 12 12 AQO3a
Technical Solution |42 42 AO3b
Testing 8 8 AO3c
Evaluation 4 4 AQO3c
Totals 75 9 66

Visit for the most up-to-date specification, resources, support and administration 109

http://

110 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

5 Scheme of assessment

Find past papers and mark schemes, and specimen papers for new courses, on our website at
aqa.org.uk/pastpapers

The AS specification is designed to be taken over one or two years with all assessments taken at
the end of the course. The A-level specification is designed to be taken over two years with all
assessments taken at the end of the course.

AS exams and certification for these specifications are available for the first time in May/June 2016
and then every May/June for the life of the specification.

A-level exams and certification for these specifications are available for the first time in May/June
2017 and then every May/June for the life of the specification.

These are linear qualifications. In order to achieve the award, students must complete all exams in
May/June in a single year. All assessments must be taken in the same series.

Our A-level assessments in Computer Science require students to demonstrate their ability to draw
together their knowledge, skills and understanding from across the full course of study. This is
evident in:

* Paper 1 assessment for extended response questions
» Paper 2 assessment for extended response questions
* non-exam assessment.

Paper 2 of our AS assessment includes extended response questions that allow students to
demonstrate their ability to draw together knowledge, skills and understanding from across the full
AS course of study.

Teacher's notes to accompany Paper 1 will be available on e-AQA:

« for A-level on 1 September in the year of certification
» for AS on 1 March in the year of certification.

All materials are available in English only.

5.1 Aims

All specifications in computer science must build on the knowledge, understanding and skills
established at key stage 4 and encourage students to develop a broad range of the knowledge,
understanding and skills of computing, as a basis for progression into further learning and/or
employment.

AS and A-level specifications in computer science must encourage students to develop:

* an understanding of, and the ability to apply, the fundamental principles and concepts of
computer science, including abstraction, decomposition, logic, algorithms and data
representation

 the ability to analyse problems in computational terms through practical experience of solving
such problems, including writing programs to do so

+ the capacity for thinking creatively, innovatively, analytically, logically and critically

» the capacity to see relationships between different aspects of computer science

Visit for the most up-to-date specification, resources, support and administration 111

http://www.aqa.org.uk/pastpapers
http://

5.2

mathematical skills related to:

* Boolean algebra

» comparison and complexity of algorithms (A-level only)

* number representations and bases.

the ability to articulate the individual (moral), social (ethical), legal and cultural opportunities
and risks of digital technology.

Assessment objectives

Assessment objectives (AOs) are set by Ofqual and are the same across all AS and A-level
Computer Science specifications and all exam boards.

The exams will measure how students have achieved the following assessment objectives.

AO1: Demonstrate knowledge and understanding of the principles and concepts of computer
science, including abstraction, logic, algorithms and data representation.

AO2: Apply knowledge and understanding of the principles and concepts of computer
science, including to analyse problems in computational terms.

AO3: Design, program and evaluate computer systems that solve problems, making
reasoned judgements about these and presenting conclusions.

Weighting of assessment objectives for AS Computer Science

AO1 7 28 35
AO2 16 19 35
AO3 27 3 30
Overall weighting of components 50 50 100

Weighting of assessment objectives for A-level Computer Science

AO1 8 22 0 30
AO2 12 16 2 30
AO3 20 2 18 40
Overall weighting of components 40 40 20 100

5.3

Assessment weightings

The marks awarded on the papers will be scaled to meet the weighting of the components.
Students' final marks will be calculated by adding together the scaled marks for each component.

112 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

Grade boundaries will be set using this total scaled mark. The scaling and total scaled marks are

shown in the table below.

AS
Component Maximum raw mark Scaling factor Maximum scaled mark
Paper 1 75 x1 75
Paper 2 75 x1 75
Total scaled mark 150
A-level
Component Maximum raw mark Scaling factor Maximum scaled mark
Paper 1 100 x1.5 150
Paper 2 100 x1.5 150
NEA 75 x1 75
Total scaled mark 375

Visit for the most up-to-date specification, resources, support and administration 113

http://

114 Visit for the most up-to-date specification, resources, support and administration

http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

6 Non-exam assessment
administration

The non-exam assessment (NEA) for A-level only is a computing practical project.

Visit aga.org.uk/7517 for detailed information about all aspects of NEA administration.

The head of the school or college is responsible for making sure that NEA is conducted in line with
our instructions and Joint Council for Qualifications (JCQ) instructions.

6.1 Supervising and authenticating

To meet Ofqual's qualification and subject criteria:

+ students must sign the Candidate record form to confirm that the work submitted is their own

+ all teachers who have marked a student’s work must sign the declaration of authentication
on the Candidate record form. This is to confirm that the work is solely that of the student
concerned and was conducted under the conditions laid down by this specification

» teachers must ensure that a Candidate record form is attached to each student’s work.

Students must have sufficient direct supervision to ensure that the work submitted can be
confidently authenticated as their own. This means that you must review the progress of the work
during research, planning and throughout its production to see how it evolves.

You may provide guidance and support to students so that they are clear about the requirements of
the task they need to undertake and the marking criteria on which the work will be judged. You may
also provide guidance to students on the suitability of their proposed task, particularly if it means
they will not meet the requirements of the marking criteria.

When checking drafts of a student’s work, you must not comment or provide suggestions on how
they could improve it. However, you can ask questions about the way they are approaching their
work and you can highlight the requirements of the marking criteria.

If a student receives any additional assistance which is acceptable within the further guidance that
is provided for this specification, you should award a mark that represents the student’s unaided
achievement. Please make a note of the support the student received on the Candidate record
form. This will allow the moderator to see whether the student has been awarded an appropriate
mark. Please note that you should sign the authentication statement on the Candidate record form.
If the statement is not signed, we cannot accept the student’s work for assessment.

Once a student submits work for marking and it has been marked, you cannot return it to the
student for improvement, even if they have not received any feedback or are unaware of the marks
awarded.

Further guidance on setting, supervising, authenticating and marking work is available on the
subject pages of our website and through teacher standardisation.

Visit for the most up-to-date specification, resources, support and administration 115

http://www.aqa.org.uk/7517
http://

6.2 Avoiding malpractice

Please inform your students of the AQA regulations concerning malpractice. They must not:

» submit work that is not their own

* lend work to other students

 allow other students access to, or use of, their own independently-sourced source material

* include work copied directly from books, the Internet or other sources without
acknowledgement

» submit work that is word-processed by a third person without acknowledgement

* include inappropriate, offensive or obscene material.

These actions constitute malpractice and a penalty will be given (for example, disqualification).

If you identify malpractice before the student signs the declaration of authentication, you don’t
need to report it to us. Please deal with it in accordance with your school or college’s internal
procedures. We expect schools and colleges to treat such cases very seriously.

If you identify malpractice after the student has signed the declaration of authentication, the head
of your school or college must submit full details of the case to us at the earliest opportunity.
Please complete the form JCQ/M1, available from the JCQ website at jcq.org.uk

You must record details of any work which is not the student’s own on the Candidate record form or
other appropriate place.

You should consult your exams officer about these procedures.

6.3 Teacher standardisation

We will provide support for using the marking criteria and developing appropriate tasks through
teacher standardisation.

For further information about teacher standardisation visit our website at aga.orqg.uk/7517

In the following situations teacher standardisation is essential. We will send you an invitation to
complete teacher standardisation if:

» moderation from the previous year indicates a serious misinterpretation of the requirements
+ a significant adjustment was made to the marks in the previous year
» your school or college is new to this specification.

For further support and advice please speak to your adviser. Email your subject team at
computerscience@adqa.org.uk for details of your adviser.

6.4 Internal standardisation

You must ensure that you have consistent marking standards for all students. One person must
manage this process and they must sign the Centre declaration sheet to confirm that internal
standardisation has taken place.

116 Visit for the most up-to-date specification, resources, support and administration

http://www.jcq.org.uk/
http://www.aqa.org.uk/7517
mailto:computerscience@aqa.org.uk
http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

Internal standardisation may involve:

+ all teachers marking some sample pieces of work to identify differences in marking standards
+ discussing any differences in marking at a training meeting for all teachers involved

+ referring to reference and archive material, such as previous work or examples from our
teacher standardisation.

6.5 Annotation

To meet Ofqual’s qualification and subject criteria, you must show clearly how marks have been
awarded against the marking criteria in this specification.

Your annotation will help the moderator see, as precisely as possible, where you think the students
have met the marking criteria.

Work can be annotated using either or both of the following methods:

+ flagging evidence in the margins or in the text
+ summative comments, referencing precise sections in the work.

6.6 Submitting marks

You should check that the correct marks for each of the marking criteria are written on the
Candidate record form and that the total mark is correct.

The deadline for submitting the total mark for each student is given at aga.org.uk/keydates

6.7 Factors affecting individual students

For advice and guidance about arrangements for any of your students, please email us as early as
possible at eos@aqa.org.uk

Occasional absence: you should be able to accept the occasional absence of students by making
sure they have the chance to make up what they have missed. You may organise an alternative
supervised session for students who were absent at the time you originally arranged.

Lost work: if work is lost you must tell us how and when it was lost and who was responsible,
using our special consideration online service at aga.org.uk/eaga

Special help: where students need special help which goes beyond normal learning support,
please use the Candidate record form to tell us so that this help can be taken into account during
moderation.

Students who move schools: students who move from one school or college to another during
the course sometimes need additional help to meet the requirements. How you deal with this
depends on when the move takes place. If it happens early in the course, the new school or
college should be responsible for the work. If it happens late in the course, it may be possible to
arrange for the moderator to assess the work as a student who was ‘Educated Elsewhere’.

Visit for the most up-to-date specification, resources, support and administration 117

http://www.aqa.org.uk/keydates
mailto:eos@aqa.org.uk
http://www.aqa.org.uk/eaqa
http://

6.8 Keeping students’ work

Students’ work must be kept under secure conditions from the time that it is marked, with
Candidate record forms attached. After the moderation period and the deadline for Enquiries about
Results (or once any enquiry is resolved) you may return the work to students.

6.9 Moderation

You must send all your students' marks to us by the date given at aga.org.uk/deadlines. You will be
asked to send a sample of your students' NEA evidence to your moderator.

You must show clearly how marks have been awarded against the assessment criteria in this
specification. Your comments must help the moderator see, as precisely as possible, where you
think the students have met the assessment criteria. You must:

+ record your comments on the Candidate Record Form (CRF)
» check that the correct marks are written on the CRF and that the total is correct.

The moderator re-marks a sample of the evidence and compares this with the marks you have
provided to check whether any changes are needed to bring the marking in line with our agreed
standards. Any changes to marks will normally keep your rank order but, where major
inconsistencies are found, we reserve the right to change the rank order.

School and college consortia

If you are in a consortium of schools or colleges with joint teaching arrangements (where students
from different schools and colleges have been taught together but entered through the school or
college at which they are on roll), you must let us know by:

« filling in the Application for Centre Consortium Arrangements for centre-assessed work,
which is available from the JCQ website jcg.org.uk

» appointing a consortium co-ordinator who can speak to us on behalf of all schools and
colleges in the consortium. If there are different co-ordinators for different specifications, a
copy of the form must be sent in for each specification.

We will allocate the same moderator to all schools and colleges in the consortium and treat the
students as a single group for moderation.

6.10 After moderation

We will return your students’ non-exam assessed work to you after the exams. You will also
receive a report when the results are issued, which will give feedback on the appropriateness of
the project undertaken, interpretation of the marking criteria and how students performed in
general.

We will give you the final non-exam assessed work marks when the results are issued.

To meet Ofqual requirements, as well as for awarding, archiving or standardisation purposes, we
may need to keep some of your students’ non-exam assessed work. We will let you know if we
need to do this.

118 Visit for the most up-to-date specification, resources, support and administration

https://www.aqa.org.uk/exams-administration/dates-and-timetables/deadlines-for-controlled-assessment
http://www.jcq.org.uk/
http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

/ General administration

You can find information about all aspects of administration, as well as all the forms you need, at
aga.org.uk/examsadmin

7.1 Entries and codes

You only need to make one entry for each qualification — this will cover all the question papers,
non-exam assessement and certification.

Every specification is given a national discount (classification) code by the Department for
Education (DfE), which indicates its subject area.

If a student takes two specifications with the same discount code, Further and Higher Education
providers are likely to take the view that they have only achieved one of the two qualifications.
Please check this before your students start their course.

AQA Advanced Subsidiary GCE in Computer Option A (C#) 7516A 2610
Science (post-16),
CK1 (KS4)

Option B (Java) 7516B 2610
(post-16),
CK1 (KS4)

Option C (Pascal/ |7516C 2610
Delphi) (post-16),
CK1 (KS4)

Option D (Python) | 7516D 2610
(post-16),
CK1 (KS4)

Option E (VB.Net) [7516E 2610
(post-16),
CK1 (KS4)

AQA Advanced Level GCE in Computer Science |Option A (C#) 7517A 2610
Option B (Java) 7517B 2610

Option C (Pascal/ |7517C 2610
Delphi)

Option D (Python) | 7517D 2610
Option E (VB.Net) | 7517E 2610

These specifications comply with Ofqual’s:

» General conditions of recognition that apply to all regulated qualifications
* GCE qualification level conditions that apply to all GCEs

Visit for the most up-to-date specification, resources, support and administration 119

http://aqa.org.uk/examsadmin
http://

+ GCE subject level conditions that apply to all GCEs in this subject
+ all relevant regulatory documents.

Ofqual has accredited these specifications. The qualification accreditation number (QAN) for the
AS is 601/4699/0. The QAN for the A-level is 601/4569/9.

7.2 Overlaps with other qualifications

There is overlapping content in the AS and A-level Computer Science specifications. This helps
you to teach the AS and A-level together.

7.3 Awarding grades and reporting results
The AS qualification will be graded on a five-point scale: A, B, C, D and E.

The A-level qualification will be graded on a six-point scale: A*, A, B, C, D and E.

Students who fail to reach the minimum standard for grade E will be recorded as U (unclassified)
and will not receive a qualification certificate.

7.4 Re-sits and shelf life

Students can re-sit the qualifications as many times as they wish, within the shelf life of the
qualifications.

7.5 Previous learning and prerequisites

There are no previous learning requirements. Any requirements for entry to a course based on
these specifications are at the discretion of schools and colleges.

However, we recommend that students should have the skills and knowledge associated with a
GCSE Computer Science course or equivalent.

7.6 Access to assessment: diversity and inclusion

General qualifications are designed to prepare students for a wide range of occupations and
further study. Therefore our qualifications must assess a wide range of competences.

The subject criteria have been assessed to see if any of the skills or knowledge required present
any possible difficulty to any students, whatever their ethnic background, religion, sex, age,
disability or sexuality. If any difficulties were encountered, the criteria were reviewed again to make
sure that tests of specific competences were only included if they were important to the subject.

As members of the Joint Council for Qualifications (JCQ) we participate in the production of the
JCQ document Access Arrangements and Reasonable Adjustments: General and Vocational
qualifications. We follow these guidelines when assessing the needs of individual students who
may require an access arrangement or reasonable adjustment. This document is published on the
JCQ website at jcg.org.uk

120 Visit for the most up-to-date specification, resources, support and administration

http://www.jcq.org.uk/
http://

AQA AS and A-level Computer Science . AS and A-level exams June 2016 onwards. Version 1.5 21 January 2019

Students with disabilities and special needs

We can make arrangements for disabled students and students with special needs to help them
access the assessments, as long as the competences being tested are not changed. Access
arrangements must be agreed before the assessment. For example, a Braille paper would be a
reasonable adjustment for a Braille reader but not for a student who does not read Braille.

We are required by the Equality Act 2010 to make reasonable adjustments to remove or lessen
any disadvantage that affects a disabled student.

If you have students who need access arrangements or reasonable adjustments, you can apply
using the Access arrangements online service at aga.org.uk/eaga

Special consideration

We can give special consideration to students who have been disadvantaged at the time of the
assessment through no fault of their own — for example a temporary iliness, injury or serious
problem such as the death of a relative. We can only do this after the assessment.

Your exams officer should apply online for special consideration at aga.org.uk/eaga

For more information and advice about access arrangements, reasonable adjustments and special
consideration please see aga.org.uk/access or email accessarrangementsqueries@aqga.org.uk

7.7 Working with AQA for the first time

If your school or college has not previously offered any AQA specification, you need to register as
an AQA centre to offer our specifications to your students. Find out how at aga.org.uk/
becomeacentre

If your school or college is new to these specifications, please let us know by completing an
Intention to enter form. The easiest way to do this is via e-AQA at aqa.org.uk/eaqa

7.8 Private candidates

These specifications are not available to private candidates.

Visit for the most up-to-date specification, resources, support and administration 121

http://www.aqa.org.uk/eaqa
http://www.aqa.org.uk/eaqa
http://www.aqa.org.uk/exams-administration/access-arrangements
mailto:accessarrangementsqueries@aqa.org.uk
http://www.aqa.org.uk/becomeacentre
http://www.aqa.org.uk/becomeacentre
http://www.aqa.org.uk/eaqa
http://

AQAE

Realising potential

Get help and support

Visit our website for information, guidance, support and resources at
You can talk directly to the Computer Science subject team:

E: computerscience@aqga.org.uk

T: 0161 957 3980

aga.org.uk

Copyright © 2019 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications, including the specifications. However, schools and colleges registered with AQA are
permitted to copy material from this specification for their own internal use.

AQA Education (AQA) is a registered charity (number 1073334) and a company limited by guarantee registered in England and Wales
(company number 3644723). Our registered address is AQA, Devas Street, Manchester M15 6EX.

http://
mailto:computerscience@aqa.org.uk

	Contents
	1 Introduction
	1.1 Why choose AQA for AS and A-level Computer Science
	Relevant to the classroom and the real world
	A qualification for all abilities at AS and A-level
	Assessment you can trust
	New resources and support to help teaching and learning

	1.2 Support and resources to help you teach
	Teaching resources
	Preparing for exams
	Analyse your students' results with Enhanced Results Analysis (ERA)
	Keep your skills up to date with professional development
	Get help and support

	2 Specification at a glance
	2.1 AS
	Subject content
	Assessments

	2.2 A-level
	Subject content
	Assessments

	3 Subject content – AS
	3.1 Fundamentals of programming
	3.1.1 Programming
	3.1.1.1 Data types
	3.1.1.2 Programming concepts
	3.1.1.3 Arithmetic operations in a programming language
	3.1.1.4 Relational operations in a programming language
	3.1.1.5 Boolean operations in a programming language
	3.1.1.6 Constants and variables in a programming language
	3.1.1.7 String-handling operations in a programming language
	3.1.1.8 Random number generation in a programming language
	3.1.1.9 Exception handling
	3.1.1.10 Subroutines (procedures/functions)
	3.1.1.11 Parameters of subroutines
	3.1.1.12 Returning a value/values from a subroutine
	3.1.1.13 Local variables in subroutines
	3.1.1.14 Global variables in a programming language

	3.1.2 Procedural-oriented programming
	3.1.2.1 Structured programming

	3.2 Fundamentals of data structures
	3.2.1 Data structures and abstract data types
	3.2.1.1 Data structures
	3.2.1.2 Single- and multi-dimensional arrays (or equivalent)
	3.2.1.3 Fields, records and files

	3.3 Systematic approach to problem solving
	3.3.1 Aspects of software development
	3.3.1.1 Analysis
	3.3.1.2 Design
	3.3.1.3 Implementation
	3.3.1.4 Testing
	3.3.1.5 Evaluation

	3.4 Theory of computation
	3.4.1 Abstraction and automation
	3.4.1.1 Problem-solving
	3.4.1.2 Following and writing algorithms
	3.4.1.3 Abstraction
	3.4.1.4 Information hiding
	3.4.1.5 Procedural abstraction
	3.4.1.6 Functional abstraction
	3.4.1.7 Data abstraction
	3.4.1.8 Problem abstraction/reduction
	3.4.1.9 Decomposition
	3.4.1.10 Composition
	3.4.1.11 Automation

	3.4.2 Finite state machines (FSMs)
	3.4.2.1 Finite state machines (FSMs) without output

	3.5 Fundamentals of data representation
	3.5.1 Number systems
	3.5.1.1 Natural numbers
	3.5.1.2 Integer numbers
	3.5.1.3 Rational numbers
	3.5.1.4 Irrational numbers
	3.5.1.5 Real numbers
	3.5.1.6 Ordinal numbers
	3.5.1.7 Counting and measurement

	3.5.2 Number bases
	3.5.2.1 Number base

	3.5.3 Units of information
	3.5.3.1 Bits and bytes
	3.5.3.2 Units

	3.5.4 Binary number system
	3.5.4.1 Unsigned binary
	3.5.4.2 Unsigned binary arithmetic
	3.5.4.3 Signed binary using two’s complement
	3.5.4.4 Numbers with a fractional part

	3.5.5 Information coding systems
	3.5.5.1 Character form of a decimal digit
	3.5.5.2 ASCII and Unicode
	3.5.5.3 Error checking and correction

	3.5.6 Representing images, sound and other data
	3.5.6.1 Bit patterns, images, sound and other data
	3.5.6.2 Analogue and digital
	3.5.6.3 Analogue/digital conversion
	3.5.6.4 Bitmapped graphics
	3.5.6.5 Digital representation of sound
	3.5.6.6 Musical Instrument Digital Interface (MIDI)
	3.5.6.7 Data compression
	3.5.6.8 Encryption

	3.6 Fundamentals of computer systems
	3.6.1 Hardware and software
	3.6.1.1 Relationship between hardware and software
	3.6.1.2 Classification of software
	3.6.1.3 System software
	3.6.1.4 Role of an operating system (OS)

	3.6.2 Classification of programming languages
	3.6.2.1 Classification of programming languages

	3.6.3 Types of program translator
	3.6.3.1 Types of program translator

	3.6.4 Logic gates
	3.6.4.1 Logic gates

	3.6.5 Boolean algebra
	3.6.5.1 Using Boolean algebra

	3.7 Fundamentals of computer organisation and architecture
	3.7.1 Internal hardware components of a computer
	3.7.1.1 Internal hardware components of a computer

	3.7.2 The stored program concept
	3.7.2.1 The meaning of the stored program concept

	3.7.3 Structure and role of the processor and its components
	3.7.3.1 The processor and its components
	3.7.3.2 The Fetch-Execute cycle and the role of registers within it
	3.7.3.3 The processor instruction set
	3.7.3.4 Addressing modes
	3.7.3.5 Machine-code/assembly language operations
	3.7.3.6 Factors affecting processor performance

	3.7.4 External hardware devices
	3.7.4.1 Input and output devices
	3.7.4.2 Secondary storage devices

	3.8 Consequences of uses of computing
	3.8.1 Individual (moral), social (ethical), legal and cultural issues and opportunities

	3.9 Fundamentals of communication and networking
	3.9.1 Communication
	3.9.1.1 Communication methods
	3.9.1.2 Communication basics

	3.9.2 Networking
	3.9.2.1 Network topology
	3.9.2.2 Types of networking between hosts
	3.9.2.3 Wireless networking

	4 Subject content – A-level
	4.1 Fundamentals of programming
	4.1.1 Programming
	4.1.1.1 Data types
	4.1.1.2 Programming concepts
	4.1.1.3 Arithmetic operations in a programming language
	4.1.1.4 Relational operations in a programming language
	4.1.1.5 Boolean operations in a programming language
	4.1.1.6 Constants and variables in a programming language
	4.1.1.7 String-handling operations in a programming language
	4.1.1.8 Random number generation in a programming language
	4.1.1.9 Exception handling
	4.1.1.10 Subroutines (procedures/functions)
	4.1.1.11 Parameters of subroutines
	4.1.1.12 Returning a value/values from a subroutine
	4.1.1.13 Local variables in subroutines
	4.1.1.14 Global variables in a programming language
	4.1.1.15 Role of stack frames in subroutine calls
	4.1.1.16 Recursive techniques

	4.1.2 Programming paradigms
	4.1.2.1 Programming paradigms
	4.1.2.2 Procedural-oriented programming
	4.1.2.3 Object-oriented programming

	4.2 Fundamentals of data structures
	4.2.1 Data structures and abstract data types
	4.2.1.1 Data structures
	4.2.1.2 Single- and multi-dimensional arrays (or equivalent)
	4.2.1.3 Fields, records and files
	4.2.1.4 Abstract data types/data structures

	4.2.2 Queues
	4.2.2.1 Queues

	4.2.3 Stacks
	4.2.3.1 Stacks

	4.2.4 Graphs
	4.2.4.1 Graphs

	4.2.5 Trees
	4.2.5.1 Trees (including binary trees)

	4.2.6 Hash tables
	4.2.6.1 Hash tables

	4.2.7 Dictionaries
	4.2.7.1 Dictionaries

	4.2.8 Vectors
	4.2.8.1 Vectors

	4.3 Fundamentals of algorithms
	4.3.1 Graph-traversal
	4.3.1.1 Simple graph-traversal algorithms

	4.3.2 Tree-traversal
	4.3.2.1 Simple tree-traversal algorithms

	4.3.3 Reverse Polish
	4.3.3.1 Reverse Polish – infix transformations

	4.3.4 Searching algorithms
	4.3.4.1 Linear search
	4.3.4.2 Binary search
	4.3.4.3 Binary tree search

	4.3.5 Sorting algorithms
	4.3.5.1 Bubble sort
	4.3.5.2 Merge sort

	4.3.6 Optimisation algorithms
	4.3.6.1 Dijkstra’s shortest path algorithm

	4.4 Theory of computation
	4.4.1 Abstraction and automation
	4.4.1.1 Problem-solving
	4.4.1.2 Following and writing algorithms
	4.4.1.3 Abstraction
	4.4.1.4 Information hiding
	4.4.1.5 Procedural abstraction
	4.4.1.6 Functional abstraction
	4.4.1.7 Data abstraction
	4.4.1.8 Problem abstraction/reduction
	4.4.1.9 Decomposition
	4.4.1.10 Composition
	4.4.1.11 Automation

	4.4.2 Regular languages
	4.4.2.1 Finite state machines (FSMs) with and without output
	4.4.2.2 Maths for regular expressions
	4.4.2.3 Regular expressions
	4.4.2.4 Regular language

	4.4.3 Context-free languages
	4.4.3.1 Backus-Naur Form (BNF)/syntax diagrams

	4.4.4 Classification of algorithms
	4.4.4.1 Comparing algorithms
	4.4.4.2 Maths for understanding Big-0 notation
	4.4.4.3 Order of complexity
	4.4.4.4 Limits of computation
	4.4.4.5 Classification of algorithmic problems
	4.4.4.6 Computable and non-computable problems
	4.4.4.7 Halting problem

	4.4.5 A model of computation
	4.4.5.1 Turing machine

	4.5 Fundamentals of data representation
	4.5.1 Number systems
	4.5.1.1 Natural numbers
	4.5.1.2 Integer numbers
	4.5.1.3 Rational numbers
	4.5.1.4 Irrational numbers
	4.5.1.5 Real numbers
	4.5.1.6 Ordinal numbers
	4.5.1.7 Counting and measurement

	4.5.2 Number bases
	4.5.2.1 Number base

	4.5.3 Units of information
	4.5.3.1 Bits and bytes
	4.5.3.2 Units

	4.5.4 Binary number system
	4.5.4.1 Unsigned binary
	4.5.4.2 Unsigned binary arithmetic
	4.5.4.3 Signed binary using two’s complement
	4.5.4.4 Numbers with a fractional part
	4.5.4.5 Rounding errors
	4.5.4.6 Absolute and relative errors
	4.5.4.7 Range and precision
	4.5.4.8 Normalisation of floating point form
	4.5.4.9 Underflow and overflow

	4.5.5 Information coding systems
	4.5.5.1 Character form of a decimal digit
	4.5.5.2 ASCII and Unicode
	4.5.5.3 Error checking and correction

	4.5.6 Representing images, sound and other data
	4.5.6.1 Bit patterns, images, sound and other data
	4.5.6.2 Analogue and digital
	4.5.6.3 Analogue/digital conversion
	4.5.6.4 Bitmapped graphics
	4.5.6.5 Vector graphics
	4.5.6.6 Vector graphics versus bitmapped graphics
	4.5.6.7 Digital representation of sound
	4.5.6.8 Musical Instrument Digital Interface (MIDI)
	4.5.6.9 Data compression
	4.5.6.10 Encryption

	4.6 Fundamentals of computer systems
	4.6.1 Hardware and software
	4.6.1.1 Relationship between hardware and software
	4.6.1.2 Classification of software
	4.6.1.3 System software
	4.6.1.4 Role of an operating system (OS)

	4.6.2 Classification of programming languages
	4.6.2.1 Classification of programming languages

	4.6.3 Types of program translator
	4.6.3.1 Types of program translator

	4.6.4 Logic gates
	4.6.4.1 Logic gates

	4.6.5 Boolean algebra
	4.6.5.1 Using Boolean algebra

	4.7 Fundamentals of computer organisation and architecture
	4.7.1 Internal hardware components of a computer
	4.7.1.1 Internal hardware components of a computer

	4.7.2 The stored program concept
	4.7.2.1 The meaning of the stored program concept

	4.7.3 Structure and role of the processor and its components
	4.7.3.1 The processor and its components
	4.7.3.2 The Fetch-Execute cycle and the role of registers within it
	4.7.3.3 The processor instruction set
	4.7.3.4 Addressing modes
	4.7.3.5 Machine-code/assembly language operations
	4.7.3.6 Interrupts
	4.7.3.7 Factors affecting processor performance

	4.7.4 External hardware devices
	4.7.4.1 Input and output devices
	4.7.4.2 Secondary storage devices

	4.8 Consequences of uses of computing
	4.8.1 Individual (moral), social (ethical), legal and cultural issues and opportunities

	4.9 Fundamentals of communication and networking
	4.9.1 Communication
	4.9.1.1 Communication methods
	4.9.1.2 Communication basics

	4.9.2 Networking
	4.9.2.1 Network topology
	4.9.2.2 Types of networking between hosts
	4.9.2.3 Wireless networking

	4.9.3 The Internet
	4.9.3.1 The Internet and how it works
	4.9.3.2 Internet security

	4.9.4 The Transmission Control Protocol/Internet Protocol (TCP/IP) protocol
	4.9.4.1 TCP/IP
	4.9.4.2 Standard application layer protocols
	4.9.4.3 IP address structure
	4.9.4.4 Subnet masking
	4.9.4.5 IP standards
	4.9.4.6 Public and private IP addresses
	4.9.4.7 Dynamic Host Configuration Protocol (DHCP)
	4.9.4.8 Network Address Translation (NAT)
	4.9.4.9 Port forwarding
	4.9.4.10 Client server model
	4.9.4.11 Thin- versus thick-client computing

	4.10 Fundamentals of databases
	4.10.1 Conceptual data models and entity relationship modelling
	4.10.2 Relational databases
	4.10.3 Database design and normalisation techniques
	4.10.4 Structured Query Language (SQL)
	4.10.5 Client server databases

	4.11 Big Data
	4.11.1 Big Data

	4.12 Fundamentals of functional programming
	4.12.1 Functional programming paradigm
	4.12.1.1 Function type
	4.12.1.2 First-class object
	4.12.1.3 Function application
	4.12.1.4 Partial function application
	4.12.1.5 Composition of functions

	4.12.2 Writing functional programs
	4.12.2.1 Functional language programs

	4.12.3 Lists in functional programming
	4.12.3.1 List processing

	4.13 Systematic approach to problem solving
	4.13.1 Aspects of software development
	4.13.1.1 Analysis
	4.13.1.2 Design
	4.13.1.3 Implementation
	4.13.1.4 Testing
	4.13.1.5 Evaluation

	4.14 Non-exam assessment - the computing practical project
	4.14.1 Overview
	4.14.1.1 Purpose of the project
	4.14.1.2 Types of problem/investigation
	4.14.1.3 Project documentation structure

	4.14.2 Using a level of response mark scheme
	4.14.2.1 Step 1 Determine a level
	4.14.2.2 Step 2 Determine a mark

	4.14.3 Marking criteria
	4.14.3.1 Analysis (9 marks)
	4.14.3.2 Documented design (12 marks)
	4.14.3.3 Technical solution (42 marks)
	4.14.3.3.1 Completeness of solution (15 marks)
	4.14.3.3.2 Techniques used (27 marks)

	4.14.3.4 Example technical skills
	4.14.3.4.1 Table 1: Example technical skills
	4.14.3.4.2 Table 2: Coding styles

	4.14.3.5 Testing (8 marks)
	4.14.3.6 Evaluation (4 marks)

	4.14.4 Project tasks that are not of A-level standard
	4.14.5 Guide to non-exam assessment documentation
	4.14.5.1 Analysis
	4.14.5.2 Design
	4.14.5.3 Technical solution
	4.14.5.4 Testing
	4.14.5.5 Evaluation

	4.14.6 Assessment objective breakdown for non-exam assessment

	5 Scheme of assessment
	5.1 Aims
	5.2 Assessment objectives
	Weighting of assessment objectives for AS Computer Science
	Weighting of assessment objectives for A-level Computer Science

	5.3 Assessment weightings
	AS
	A-level

	6 Non-exam assessment administration
	6.1 Supervising and authenticating
	6.2 Avoiding malpractice
	6.3 Teacher standardisation
	6.4 Internal standardisation
	6.5 Annotation
	6.6 Submitting marks
	6.7 Factors affecting individual students
	6.8 Keeping students' work
	6.9 Moderation
	School and college consortia

	6.10 After moderation

	7 General administration
	7.1 Entries and codes
	7.2 Overlaps with other qualifications
	7.3 Awarding grades and reporting results
	7.4 Re-sits and shelf life
	7.5 Previous learning and prerequisites
	7.6 Access to assessment: diversity and inclusion
	Students with disabilities and special needs
	Special consideration

	7.7 Working with AQA for the first time
	7.8 Private candidates

